
Copyright © 2019 HashiCorp

Network
Observability with
Envoy

Network Observability with Envoy

Nic Jackson
Developer Advocate at HashiCorp

1. Introduction - create a common vocabulary.

2. Metrics - configure and use metrics.

3. Tracing - configure and use tracing.

4. Logging - collect access logs.

Agenda

Introduction

The shift
from static
to dynamic
networking

Dynamic Infrastructure
Service-based networking

Static Infrastructure
Host-based networking

The shift
from static
to dynamic
networking

Dynamic Infrastructure
Service-based networking

Static Infrastructure
Host-based networking

Homogeneous infrastructure with
static IPs, primarily north-south
traffic, protected by
coarse-grained segments.

TRADITIONAL APPROACH

● Load balancers to create
artificial static IPs

● Firewall sprawl to constrict service
traffic

● Configuration management
to deploy services

Heterogeneous infrastructure with
dynamic IPs, dominated by
east-west traffic, without a clear
network perimeter.

CONSUL APPROACH

● Service Discovery for connectivity

● Service Segmentation for security

● Service Configuration for runtime
configuration

Market
trend from
monoliths to
microservices

Single,
Physical
Server

Dynamic Virtual
Machines

Smaller,
Ephemeral
Containers

Reduced Productivity
Waiting for manual updates to load balancers and
firewalls blocks development throughput.

Business
challenges
of dynamic
infrastructure

Increased Risk
Firewall rule sprawl is complex to manage and
mistakes create security vulnerabilities.

Increased Cost
Load balancers and firewalls are expensive and costly
to maintain.

Components
Service Mesh

Control Plane
▪ Service to service communication

policy
▪ Service Catalog
▪ CA and x509 certificate generation
▪ Configuration and proxy management

9© 2019 HashiCorpSERVICE MESH

Components
Service Mesh

Data Plane
▪ Authorization
▪ Request tracing
▪ Traffic shaping
▪ Load balancing
▪ Service discovery
▪ Circuit breaking
▪ Retry logic
▪ Networking statistics

10© 2019 HashiCorpSERVICE MESH

Networks are not 100% stable and
often experience transient failure.

You can’t do Reliability without
Observability.

Observability, is it just a buzzword?

Observability is a measure of how well
internal states of a system can be

inferred from knowledge of
external outputs.

Observability

Internal and external instrumentation

Metrics

Envoy Architecture
Metrics

Terminology

Listener
Terminology

A listener is a named network location (e.g., port, unix domain socket, etc.)
that can be connected to by downstream clients. Envoy exposes one or
more listeners that downstream hosts connect to.

Downstream
Terminology

A downstream host connects to Envoy, sends requests, and receives
responses.

Upstream
Terminology

An upstream host sends requests from Envoy to other services and returns
responses.

Cluster
Terminology

A cluster is a group of logically similar upstream hosts that Envoy connects
to. Envoy discovers the members of a cluster via service discovery. The
cluster member that Envoy routes a request to is determined by the load
balancing policy.

Configuration
Metrics

Envoy
metrics.
Envoy does not label the
metrics with the application
name, so add tags to be
able to differentiate
between metrics.

CODE EDITOR

"stats_config": {
 "stats_tags": [
 {
 "tag_name": "local_cluster",
 "fixed_value": "emojify-api-v2"
 }
],
 "use_all_default_tags": true
}

Envoy Prometheus Metrics
Metrics

▪ 1.10 introduces histograms for Prometheus metrics
▪ Metrics exposed with unsecured admin endpoint (/stats/prometheus),
▪ Exposure of metrics needs to be configured with loopback route to

avoid exposing admin endpoints

Using metrics
Metrics

▪ Originally created by Etsy

▪ Push based metrics

▪ Lightweight UDP protocol

▪ No support for metadata

StatsD

Metrics types
StatsD

Type Description

Counter Increment value, e.g. number of method calls.

Gauge Value over time, e.g. CPU consumption, memory usage.

Timing Time taken to perform a task, e.g. time take to perform a method call.

Set Set of unique values over collection period.

CODE EDITOR

metric.name:value|type|sample_rate
myservice.mymethod.called:123|c

metrics output
myservice.service1.mymethod.called
myservice.service2.mymethod.called
myservice.service3.mymethod.called

Metrics format
StatsD does not support basic metric labels.

▪ Created by DataDog based on StatsD protocol

▪ Push based metrics

▪ Lightweight UDP protocol

▪ Support for metadata through tags

DogStatsD

CODE EDITOR

myservice.mymethod.called tags[serviceid:service1]
myservice.mymethod.called tags[serviceid:service2]
myservice.mymethod.called tags[serviceid:service3]

Metrics format
DogStatsD

▪ Pull based approach from central server

▪ Service implements HTTP endpoint exposing
metrics

▪ Supports metadata by default

Prometheus

Metrics types
Prometheus

Type Description

Counter
Cumulative metric, representing a monotonically increasing counter, e.g.
number of method calls.

Gauge
Single numerical value that can arbitrarily go up and down, e.g. CPU
consumption.

Histogram
Samples observations and counts them in configurable buckets, e.g. request
timings.

CODE EDITOR

envoy_http_downstream_rq_completed{envoy_http_conn_manager_prefix="ingress_cache"}

Metrics format
Prometheus

▪ Tagging is essential to effectively build
dashboards

▪ Metrics need to be tagged with Metadata such
as pod name, node, etc

Choosing a
format

Listener
Metrics

Key service metrics
Listener - Connections

downstream_cx_total Counter Total connections

downstream_cx_destroy Counter Total destroyed connections

downstream_cx_active Gauge Total active connections

Every listener has a statistics tree rooted at <prefix>.listener.<address>. with the following statistics:

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

Envoy
metrics.
use_all_default_tags
extracts common
components from metric
names and adds as tags

CODE EDITOR

"stats_config": {
 "stats_tags": [
 {
 "tag_name": "local_cluster",
 "fixed_value": "emojify-api-v2"
 }
],
 "use_all_default_tags": true
}

CODE EDITOR

The number of established connections to emojify-api-v2 over 30 seconds.
increase(envoy_listener_downstream_cx_total{local_cluster="emojify-api-v2"}[30s])

The number of destroyed connections to emojify-api-v2 over 30 seconds.
increase(envoy_listener_downstream_cx_destroy{local_cluster="emojify-api-v2"}[30s])

The current number of active connections to emojify-api-v2.
envoy_listener_downstream_cx_active{local_cluster="emojify-api-v2"}

Metrics queries
Prometheus

Total connections
Grafana

New pod started

ssl.fail_verify_no_cert Counter
Total TLS connections that failed because of missing
client certificate

ssl.connection_error Counter
Total TLS connection errors not including failed
certificate verifications

ssl.fail_verify_error Counter Total TLS connections that failed CA verification

ssl.fail_verify_san Counter Total TLS connections that failed SAN verification

downstream_pre_cx_timeout Counter Sockets that timed out during listener filter processing

downstream_pre_cx_active Gauge Sockets currently undergoing listener filter processing

downstream_cx_length_ms Histogram Connection length milliseconds

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

Every listener has a statistics tree rooted at <prefix>.listener.<address>. with the following statistics:

Key diagnostics metrics
Listener

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

Requests HTTP /
GRPC
Metrics

downstream_rq_1xx Counter Total 1xx responses

downstream_rq_2xx Counter Total 2xx responses

downstream_rq_3xx Counter Total 3xx responses

downstream_rq_4xx Counter Total 4xx responses

downstream_rq_5xx Counter Total 5xx responses

downstream_rq_ws_on_non_ws_route Counter Total WebSocket upgrade requests rejected by non WebSocket routes

downstream_rq_time Histogram Total time for request and response (milliseconds)

downstream_rq_timeout Counter Total requests closed due to a timeout on the request path

https://www.envoyproxy.io/docs/envoy/latest/configuration/http_conn_man/stats

Every listener has a statistics tree rooted at <prefix>.http.<address>. with the following statistics:

Key metrics
Listener - Requests HTTP

https://www.envoyproxy.io/docs/envoy/latest/configuration/http_conn_man/stats

https://www.envoyproxy.io/docs/envoy/latest/configuration/http_conn_man/stats

Every listener has a statistics tree rooted at <prefix>.http.<address>. with the following statistics:

Key metrics
Listener - Requests HTTP

downstream_rq_total Counter Total requests

downstream_rq_http1_total Counter Total HTTP/1.1 requests

downstream_rq_http2_total Counter Total HTTP/2 requests

downstream_rq_too_large Counter Total requests resulting in a 413 due to buffering an overly large body

downstream_rq_completed Counter
Total requests that resulted in a response (e.g. does not include aborted
requests)

https://www.envoyproxy.io/docs/envoy/latest/configuration/http_conn_man/stats

CODE EDITOR

The number of requests to emojify-api-v2 over 30 seconds which did not result in an error
increase(envoy_http_downstream_rq_xx{

local_cluster="emojify-api-v2",
envoy_response_code_class!="5"

}[30s]

The number of requests to emojify-api-v2 over 30 seconds which resulted in an error
increase(envoy_http_downstream_rq_xx{

local_cluster="emojify-api-v2",
envoy_response_code_class="5"

}[30s])

Metrics queries
Prometheus

Total Requests - all listeners for a proxy
Grafana

New pod started

Request Errors
Grafana

New pod started

CODE EDITOR

Upstream Timing

sum(envoy_cluster_upstream_rq_time{

envoy_cluster_name=~"cluster_emojify_api_v2_sidecar_proxy.*"

} > 0) by (quantile)

sum(rate(envoy_cluster_external_upstream_rq_time_sum{

envoy_cluster_name=~"cluster_emojify_api_v2_sidecar_proxy.*"

}[30s])) / sum(rate(envoy_cluster_external_upstream_rq_time_count{

envoy_cluster_name=~"cluster_emojify_api_v2_sidecar_proxy.*"

}[30s]))

Metrics queries - Timing
Prometheus

Request Time
Grafana

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

The filter emits statistics in the cluster.<route target cluster>.grpc. namespace

Key metrics
Listener - Requests gRPC

<grpc service>.<grpc method>.success Counter Total successful service/method calls

<grpc service>.<grpc method>.failure Counter Total failed service/method calls

<grpc service>.<grpc method>.total Counter Total service/method calls

● GRPC does not use HTTP status codes
● Status Codes are part of the Protocol and are reported as individual metrics

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

CODE EDITOR

"filter_chains": [
 {
 "filters": [
 {
 "name": "envoy.http_connection_manager",
 "config": {
 "http_filters": [
 {
 "name": "envoy.grpc_http1_bridge",
 "config": {}
 },
 {
 "name": "envoy.router"
 }
],

gRPC Bridge Filter
Configuration

CODE EDITOR

GRPC no errors - Status Code 0

sum(increase(envoy_cluster_grpc_0{

label_app="emojify-cache"

}[30s])) by (envoy_grpc_bridge_method)

GRPC no errors - Status Code 5

sum(increase(envoy_cluster_grpc_5{

label_app="emojify-cache"

}[30s])) by (envoy_grpc_bridge_method)

gRPC Errors

sum(increase(envoy_cluster_grpc_failure{

label_app="emojify-cache"

}[30s])) by (envoy_grpc_bridge_method)

Metrics queries
Prometheus

gRPC - Success
Grafana

Methods:
Put
Get
Exists

gRPC Error
Grafana

HTTP Response 5xx

Clusters
Metrics

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

Every listener has a statistics tree rooted at <prefix>.http.<address>. with the following statistics:

Key metrics
Cluster

upstream_rq_timeout Counter
Total requests that timed out waiting for a
response

upstream_rq_per_try_timeout Counter Total requests that hit the per try timeout

upstream_rq_retry Counter Total request retries

upstream_rq_retry_success Counter Total request retry successes

ejections_active Counter Number of currently ejected hosts

https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/stats#listener-manager

CODE EDITOR

Retries

sum(increase(envoy_cluster_upstream_rq_retry{envoy_cluster_name=~"cluster_emojify_api_v2_sidecar_pro

xy.*"}[30s]))

Timeouts

sum(increase(envoy_cluster_upstream_rq_timeout{envoy_cluster_name=~"cluster_emojify_api_v2_sidecar_

proxy.*"}[30s]))

sum(increase(envoy_cluster_upstream_rq_per_try_timeout{envoy_cluster_name=~"cluster_emojify_api_v2_s

idecar_proxy.*"}[30s]))

Outlier Ejection

sum(envoy_cluster_outlier_detection_ejections_active{envoy_cluster_name=~"cluster_emojify_api_v2_sideca

r_proxy.*"})

Metrics queries
Prometheus

Retries
Grafana

Retry Applied: No errors to userService Errors

Timeouts
Grafana

Outlier Ejection
Grafana

New pod started
Constant errors

After a fixed number of
consecutive errors endpoint
removed from cluster

Envoy retries failing
 endpoint

Ejection interval
increases

AuthZ
Metrics

Control plane
AuthZ

External Authorization
1. Envoy validates that the connections is

allowed by calling the ext_authz filters
api (once per new connection).

2. If allowed the request is passed to the
upstream service.

3. Send the response to the caller.

Control plane
AuthZ

▪ External authorization API is normally called when establishing a new
connection to an upstream.

▪ Failed authorization is an indication of a failing control plane,
misconfiguration of security policy, or malicious activity.

https://www.envoyproxy.io/docs/envoy/latest/configuration/network_filters/ext_authz_filter.html

The network filter outputs statistics in the config.ext_authz. namespace, with the following statistics:

Key AuthZ metrics
AuthZ

total Counter Total responses from the filter.

error Counter Total errors contacting the external service.

denied Counter Total responses from the authorizations service that were to deny the traffic.

failure_mode_allowed Counter
Total requests that were error(s) but were allowed through because of
failure_mode_allow set to true.

ok Counter Total responses from the authorization service that were to allow the traffic.

cx_closed Counter Total connections that were closed.

active Gauge Total currently active requests in transit to the authorization service.

https://www.envoyproxy.io/docs/envoy/latest/configuration/network_filters/ext_authz_filter.html

CODE EDITOR

Successful AuthZ

increase(envoy_ext_authz_connect_authz_ok{local_cluster="emojify-api-v2"}[1m])

AuthZ Denied

increase(envoy_ext_authz_connect_authz_denied{local_cluster="emojify-api-v2"}[1m])

Metrics queries
Prometheus

AuthZ OK
Grafana

New pod startedCached Authorization - no metrics

AuthZ Failed
Grafana

AuthZ failure, either:
Misconfiguration or Attack

Tracing

What is tracing?
Tracing

Distributed tracing, also called distributed request tracing, is a method used
to profile and monitor applications, especially those built using a
microservices architecture. Distributed tracing helps pinpoint where
failures occur and what causes poor performance.

https://opentracing.io/docs/overview/what-is-tracing/

https://opentracing.io/docs/overview/what-is-tracing/

Configuration
Tracing

CODE EDITOR

"load_assignment": {

 "cluster_name": "cluster_tracing_honeycomb_opentracing_proxy_9411",

 "endpoints": [{

 "lb_endpoints": [{

 "endpoint": {

 "address": {

 "socket_address": {

 "address": "honeycomb-opentracing-proxy",

 "port_value": 9411,

 "protocol": "TCP"

 } } }

 }]

 }],

 "name": "cluster_tracing_honeycomb_opentracing_proxy_9411"

}

Tracing Cluster
Configuration

CODE EDITOR

{

 "http": {

 "config": {

 "collector_cluster": "cluster_tracing_honeycomb_opentracing_proxy_9411",

 "collector_endpoint": "/api/v1/spans"

 },

 "name": "envoy.zipkin"

 }

}

Tracing Configuration
Configuration

Trace - HTTP Post
honeycomb.io

Public Ingress Route upstream to
API

External upstream
gRPC

Handling tracing
spans
Tracing

CODE EDITOR

var otHeaders = []string{

 "x-request-id",

 "x-b3-traceid",

 "x-b3-spanid",

 "x-b3-parentspanid",

 "x-b3-sampled",

 "x-b3-flags",

 "x-ot-span-context"}

var headers http.Header

for _, h := range otHeaders {

 if v := r.Header.Get(h); len(v) > 0 { headers.Add(h, v) }

}

return headers

Adding Headers
HTTP

CODE EDITOR

headers := createHeadersFromRequest(r)

req, _ := http.NewRequest("GET", "http://localhost:8004", nil)

req.Header = headers

resp, err := http.DefaultClient.Do(req)

if err != nil {

 http.Error(rw, err.Error(), http.StatusInternalServerError)

 return

}

Adding Headers
HTTP

CODE EDITOR

var otHeaders = []string{

 "x-request-id",

 "x-b3-traceid",

 "x-b3-spanid",

 "x-b3-parentspanid",

 "x-b3-sampled",

 "x-b3-flags",

 "x-ot-span-context"}

var pairs []string

for _, h := range otHeaders {

 if v := r.Header.Get(h); len(v) > 0 { pairs = append(pairs, h, v) }

}

md := metadata.Pairs(pairs...)

return metadata.NewOutgoingContext(context.Background(), md)

Adding Headers
gRPC

CODE EDITOR

// create a grpc context containing the parent span metadata

ctx := createGRPCContextFromRequest(r)

resp, err := e.emojify.Create(ctx, &wrappers.StringValue{Value: u.String()})

if err != nil {

 http.Error(rw, err.Error(), http.StatusInternalServerError)

 return

}

Adding Headers
gRPC

Logging

Logging
Loki

Thank You
nic@hashicorp.com
www.hashicorp.com

82

mailto:hello@hashicorp.com

