

Enable Serverless Metrics in Apache OpenWhisk
on Kubernetes with Prometheus

Ying Chun Guo, IBM

About me

• GUO,	Ying	Chun（WeChat：daisy-ycguo）	
•  10+	years	IBMer	
•  Open	source	developer	
•  Focus	on	Serverless	on	Kubernetes	
•  Committer	of	Apache	OpenWhisk,	contributor	of	Knative	

Agenda

• Apache	OpenWhisk	Overview	
• Metrics	defined	and	collected	with	Kamon	
• Metrics	stored	and	displayed	with	Prometheus	
• Demo	

Serverless
In
cr
ea
sin

g	
fo
cu
s	o

n	
bu

sin
es
s	l
og
ic
	

Decreasing	concern	(and	control)	over	infrastructure	implementation	

Virtual	machines	

Functions	

Containers	

Bare	Metal	

•  Faster	start-up	times	
•  Better	resource	utilization	
•  Finer-grained	management	
	
•  Splitting	up	the	monolith	

Properties

•  Stateless	
•  Event	Driven	
•  Auto-scaled	/	Scale-to-zero	
•  Short	Lived	
•  Reduced	Cost	
•  Faster	Time	to	Market	

Kubernetes	

Open	Source	Serverless	Project	

To make your own serverless platform

Apache OpenWhisk

Source
event

Trigger

Rule

Action

Result

A	serverless,	open	source	cloud	platform	that	executes	
functions	in	response	to	events	at	any	scale.	

Apache OpenWhisk offers:
•  Apache Software Foundation (ASF)	

•  True,	community-driven	open	source	(Apache	2	License)
•  Proven on IBM Cloud

•  Exact, same code in open source

Deploy Apache OpenWhisk on
Kubernetes with Helm

	
	
	

	
	
•  https://github.com/apache/incubator-openwhisk-deploy-kube	

Use cases

Metrics is important on Serverless

•  Serverless	is	a	new	experience	to	developers,	hiding	developers	from	
infrastructure	details.	

•  Metrics,	or	telemetry,	is	the	only	way	for	developers	to	understand	
what	happens	on	the	server.	

•  Metrics	is	useful	to	understand	system	health	condition.	
•  Metrics	is	necessary	to	enable	metering	and	billing.	

System metrics and user metrics

OpenWhisk	distinguishes	between	system	and	user	metrics	
	
•  System	metrics	typically	contain	information	about	system	
performance	

•  collected	by	Kamon	
•  usually	used	by	providers/operators.	

•  User	metrics	encompass	information	about	action	performance.	
•  Sent	to	Kafka	in	a	form	of	events	
•  Consumed	by	OpenWhisk	users	
•  could	also	used	for	billing	or	audit	purposes	

Kamon

Kamon	is	an	open	source	monitoring	framework	for	applications	running	on	the	Java	
Virtual	Machine	(JVM)	with	integrations	for	Scala	and	Akka.	

•  Powerful	metrics,	distributed	tracing	and	context	propagation	APIs	in	a	single	
library.	

•  Provide	different	metric	recording	instruments	in	its	core	metrics	API.	
•  Switch	reporters	at	any	time	without	having	to	change	your	instrumentation.	
•  Works	with	Prometheus,	Zipkin,	InfluxDB,	Kamon	APM	and	other	commercial	and	
OSS	solutions.	

Kamon Metrics Instruments

•  Counter:	counts	how	many	times	it	was	incremented	during	a	reporting	period.	
Good	for	counting	errors	or	occurrences	of	specific	events	in	your	service.	

•  Gauges:	track	a	single	value	that	can	be	incremented,	decremented	or	explicitly	
set.	Good	for	slow	moving	variables,	like	available	memory	and	disk	usage.	

•  Histograms:	track	the	entire	value	distribution	of	a	given	metric.	
•  Timer:	allows	you	to	start()	the	timer	and	later	stop()	the	StartedTimer	instance	
•  Range	Samplers:	internally	tracks	three	variables:	the	current	value,	the	minimum	
and	the	maximum	observed	value.	

OpenWhisk Metrics

•  Counter	
•  Records	the	count	of	activations	sent	to	Kafka.	
•  Records	the	count	of	non	blocking	activations	started.	

•  Gauges	
•  Records	the	number	of	activations	being	worked	upon	for	a	given	controller	
•  Records	the	amount	of	RAM	memory	in	use	for	in	flight	activations.	

•  Histograms	
•  Current	memory	capacity	for	all	usable	managed	and	blackbox	invokers	
•  Kafka	topic	to	receive	activations	to	complete.	

OpenWhisk	system	metrics	are	emitted	from	within	Controller	and	Invoker,	monitoring	
activations,	memory	usage,	Kafka,	database,	HTTP	requests	and	etc.	There	are	60+	
metrics	till	now.	

Prometheus
Prometheus,	a	Cloud	Native	Computing	Foundation	project,	is	a	systems	and	service	
monitoring	system.	It	collects	metrics	from	configured	targets	at	given	intervals,	
evaluates	rule	expressions,	displays	the	results,	and	can	trigger	alerts	if	some	condition	is	
observed	to	be	true.	

•  a	multi-dimensional	data	model	(timeseries	defined	by	metric	name	and	set	of	key/
value	dimensions)	

•  a	flexible	query	language	to	leverage	this	dimensionality	
•  no	dependency	on	distributed	storage;	single	server	nodes	are	autonomous	
•  timeseries	collection	happens	via	a	pull	model	over	HTTP	
•  pushing	timeseries	is	supported	via	an	intermediary	gateway	
•  targets	are	discovered	via	service	discovery	or	static	configuration	
•  multiple	modes	of	graphing	and	dashboarding	support	
•  support	for	hierarchical	and	horizontal	federation	

Prometheus Architecture

Kamon-Prometheus Exporter

https://github.com/kamon-io/kamon-prometheus	

•  An	open	source	project	to	provide	the	integration	Kamon	with	
Prometheus	

•  With	a	very	simple	statements,	the	metrics	collected	by	Kamon	will	be	
coverted	to	Prometheus	format	and	exported	to	a	http	address.	

import	kamon.prometheus.PrometheusReporter	
	
Kamon.addReporter(new	PrometheusReporter())	

	global:	
						scrape_interval:	1s	
	scrape_configs:	
					-	job_name:	‘kamon’	
									static_configs:	
											-	targets:	[‘owdev-controller.openwhisk.svc.cluster.local:8080']	

Kamon and Prometheus

OpenWhisk	Controller	

Controller	

Kamon	

Kamon-
Prometheus	
Exporter	

Port	8080	

Retrieval	 PromQL	

Storage	

Prometheus	

Demo

