
Open Standards for 
Machine Learning 
Deployment

Nick Pentreath
Principal Engineer

@MLnick

Animesh Singh
STSM and Program Director

@animeshsingh

Hou Gang Liu
Advisory Software Developer

hougangliu



Center for Open Source 
Data and AI Technologies 

HQ in San Francisco, 
California

Team located across US, 
some in EMEA

CODAIT aims to make AI solutions dramatically 
easier to create, deploy, and manage in the 
enterprise.

Relaunch of the IBM Spark Technology Center 
(STC) to reflect expanded mission. 

We contribute to foundational open source
software across the enterprise AI lifecycle.

40 open-source developers & advocates!

Improving Enterprise AI Lifecycle in Open Source

CODAIT
codait.org



Agenda

Ø Background

Ø Open Standards for Machine Learning Deployment

Ø Summary



What is Machine Learning?



What is Machine Learning?

Learn from data to make predictions



What is Machine Learning?

Learn from historical data to make 
predictions about the future



Applied Machine Learning

Learn from historical data to make 
predictions about the future, in 
order to make decisions



Intelligent Systems

Source: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Automated decision-making
Continual learning (new data & feedback)
Adapting to environment
Memory & generalization

Source: https://www.youtube.com/watch?v=m3u-1yttrVw



The Machine Learning 
Workflow



Perception



In reality the workflow spans 
teams …



… and tools …



… and is a small (but critical!) 
piece of the puzzle

*Source: Hidden Technical Debt in Machine Learning Systems

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


Machine Learning 
Deployment



What, Where, How?

• What are you deploying?
• What is a “model”?

• Where are you deploying?
• Target environment (cloud, browser, edge)

• Batch, streaming, real-time?

• How are you deploying?
• “devops” deployment mechanism

• Serving framework

We will talk mostly about the what



What is a “model”?



Pipelines, not Models

• Deploying just the model part of the 
workflow is not enough

• Entire pipeline must be deployed
• Data transform

• Feature extraction & pre-processing

• ML model itself

• Prediction transformation

• Technically even ETL is part of the 
pipeline!

• Pipelines in frameworks
• scikit-learn

• Spark ML pipelines

• TensorFlow Transform

• pipeliner (R)



Challenges

• Formats

• Each framework does things differently

• Proprietary formats: lock-in, not portable

• Lack of standardization leads to custom 
solutions and extensions

• Need to manage and bridge many different:
• Languages - Python, R, Notebooks, Scala / Java / C 

• Frameworks – too many to count!

• Dependencies

• Versions

• Performance characteristics can be highly 
variable across these dimensions

• Friction between teams
• Data scientists & researchers – latest & greatest

• Production – stability, control, minimize changes, 
performance

• Business – metrics, business impact, product must 
always work!

* Logos trademarks of their respective projects



Containers for ML 
Deployment

19



Containers are The Solution… right?

• But …

• What goes in the container is still the most 
important factor

• Performance can be highly variable across 
language, framework, version

• Requires devops knowledge, CI / 
deployment pipelines, good practices

• Does not solve the issue of standardization

• Formats

• APIs exposed

• A serving framework is still required on top

• Container-based deployment has 
significant benefits

• Repeatability

• Ease of configuration

• Separation of concerns – focus on what, not 
how

• Allow data scientists & researchers to use 
their language / framework of choice

• Container frameworks take care of (certain) 
monitoring, fault tolerance, HA, etc.



Open Standards for 
Model Serialization



Why a standard?

Standard 
Format

Execution

Optimization

Tooling
(Viz, analysis, …)

Single stack



Predictive Model Markup Language

• PMML was created by Data Mining Group 
(DMG) - IBM is a founding member

• Model interchange format in XML

• First release in 1997

• Svetlana Levitan from CODAIT is release 
manager for PMML (and PFA)

• Widely used and supported – over 30 vendors 
and organizations

• Spark support lacking natively but 3rd party 
projects available: jpmml-sparkml

• Other exporters include scikit-learn, R, 
XGBoost and LightGBM

http://dmg.org/pmml

http://dmg.org/pmml/products.html
https://github.com/jpmml/jpmml-sparkml
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/r2pmml
https://github.com/jpmml/jpmml-xgboost
https://github.com/jpmml/jpmml-lightgbm
http://dmg.org/pmml


PMML – Format overview

Source: http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_audit_logreg.xml

http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_audit_logreg.xml


PMML - Coverage

• Bayesian Network

• Gaussian Process

• Ruleset

• Scorecard

• Sequence Model

• Support Vector Machine

• Time Series

• Various feature transformation functions 
(norm, discretize, UDFs)

• Association Rules Model

• Clustering Model

• General Regression

• Naïve Bayes

• Nearest Neighbor Model

• Neural Network

• Regression

• Tree Model

• Mining Model: ensemble / composition

• Baseline Model



PMML - Shortcomings

• Shortcomings

• Cannot represent arbitrary programs / analytic 
applications

• Flexibility comes from custom plugins => lose 
benefits of standardization

• Potential questions around licensing for open-
source scoring engine – jpmml-evaluator (dual 
AGPL 3.0 / commercial license)

https://github.com/jpmml/jpmml-evaluator


Portable Format for Analytics

• PFA was also created by DMG

• PMML has some important limitations 
around flexibility and extensibility

• PFA is an attempt to address these 
shortcomings

• PFA consists of:

• JSON serialization format

• AVRO schemas for data types

• Encodes functions (actions) that are applied to inputs 
to create outputs with a set of built-in functions and 
language constructs (e.g. control-flow, conditionals)

• Essentially a mini functional math language + schema 
specification

• Type and function system means PFA can be 
fully & statically verified on load and run by 
any compliant execution engine

• => portability across languages, frameworks, 
run times and versions

http://dmg.org/pfa

http://dmg.org/pfa


A Simple Example

• Specify the action to perform (typically on 
input)

• Example – multi-class logistic regression

• Specify input and output types using Avro 
schemas



Managing State

• Data storage specified by cells

• A cell is a named value acting as a global variable

• Typically used to store state (such as model 
coefficients, vocabulary mappings, etc)

• Types specified with Avro schemas

• Cell values are mutable within an action, but 
immutable between action executions of a given PFA 
document

• Persistent storage specified by pools

• Closer in concept to a database

• Pools values are mutable across action executions



Other Features

• Special forms

• Control structure – conditionals & loops

• Creating and manipulating local variables

• User-defined functions including lambdas

• Casts

• Null checks

• (Very) basic try-catch, user-defined errors and logs

• Comprehensive built-in function library

• Math, strings, arrays, maps, stats, linear algebra

• Built-in support for some common models - decision 
tree, clustering, linear models



Current Status

• Major missing features / limitations

• No built-in support for mixed dense/sparse vectors

• No built-in support for generic tensors (3D+)

• No built-in functions for typical Deep Learning models 
(e.g. CNN, RNN)

• No support / awareness of GPU

• Open questions

• Industry usage and adoption

• Performance and scalability

• Reference implementations

• Hadrian project by Open Data Group

• Covers PFA export / DSL in Python, R

• Covers scoring for PFA in JVM, Python, R

• What does PFA do well?

• Type system

• Flexibility & composability – functional approach

• User-defined functions

• Control flow

• Strong support for traditional ML operations

https://github.com/opendatagroup/hadrian


Aardpfark

• PFA export for Spark ML pipelines
• aardpfark-core: Scala DSL for creating PFA 

documents

• avro4s to generate schemas from case classes; 
json4s to serialize PFA document to JSON

• aardpfark-sparkml: uses DSL to export Spark ML 
components and pipelines to PFA



Aardpfark is open-source!

• Coverage

• Almost all predictors (ML models)

• Many feature transformers

• Pipeline support (still needs work)

• Equivalence tests Spark <-> PFA

• Tests for core Scala DSL

• Help welcome!

• Finish implementing components

• Improve pipeline support

• Complete Scala DSL for PFA

• Python support

• Tests, docs, testing it out!

https://github.com/CODAIT/aardpfark

https://github.com/salesforce/TransmogrifAI/tree/master/local

https://github.com/CODAIT/aardpfark
https://github.com/salesforce/TransmogrifAI/tree/master/local


PFA - future directions

• PFA for Deep Learning?

• Comparing to ONNX and other emerging standards

• Better suited for the more general pre-processing 
steps of DL pipelines

• Requires supporting DL-specific operators

• Requires standardized tensor schema and support 
for tensors in PFA function library

• GPU support

• Extend our work in Aardpfark

• Initial focus on Spark ML

• Later add support for scikit-learn pipelines, 
XGBoost, LightGBM, etc

• Performance testing & improvements

• PFA / PMML / ONNX

• Propose improvements to PFA 

• Generic vector / tensor support

• Less cumbersome schema definitions

• Performance improvements to scoring engine



Open Neural Network Exchange (ONNX)

• ONNX-ML

• Provides support for (parts of) “traditional” 
machine learning

• Additional types – lists and maps

• Operators

• Vectorizers (numeric & string data)

• One hot encoding, label encoding

• Scalers (normalization, scaling)

• Models (linear, SVM, TreeEnsemble)

• …

• Championed by Facebook & Microsoft

• Protobuf for serialization format and type 
specification

• Describes computation graph (including 
operators)

• In this way the serialized graph is “self-describing” 
similarly to PFA

• More focused on Deep Learning / tensor 
operations

• Baked into PyTorch 1.0.0 / Caffe2 as the 
serialization & interchange format



ONNX Recent Developments

• Open source scoring engine for ONNX 
released by Microsoft

• Supports ONNX-ML spec

• Strong recent activity in converters – e.g. 
scikit-learn, SparkML

• Open governance model

https://github.com/Microsoft/onnxruntime

https://github.com/onnx/onnx/tree/master/community

https://github.com/onnx/sklearn-onnx
https://github.com/onnx/onnxmltools/tree/master/onnxmltools/convert/sparkml
https://github.com/Microsoft/onnxruntime
https://github.com/onnx/onnx/tree/master/community


ONNX Supported Tools



ONNX - future directions

• ONNX Training Working Group

• Enable ONNX to support model training 

• Performance testing & improvements

• PFA / PMML / ONNX

• ONNX functions and control flow still 
developing (experimental)

• Extensions to ONNX-ML ecosystem

• Text pre-processing, e.g. Tokenization / better NLP 
support

• Still limited image pre-processing / transformers

• (Crop added)

• Further development on converters –
TensorFlow, PyTorch, …



Conclusion



Summary

PMML

! !
• Established standard, 

backed by DMG members

• Widely supported

• Good support for standard 
machine learning models 
and feature processing

• Custom extensions 

• Custom extensions

• Less flexibility

• State of open source 
scoring engine

• Poor support for deep 
learning, GPUs



Summary

PFA

! !
• Backing by DMG

• Growing adoption

• Greatest flexibility and 
extensibility 

• Can handle (almost) any 
model or feature 
processing workflow

• Complex and difficult to 
learn

• Still relatively new

• Open questions around 
performance and 
scalability

• Poor support for deep 
learning, GPUs



Summary

ONNX

! !
• Backing by large industry 

players

• Growing rapidly with lots 
of momentum

• Focused on deep learning 
operators

• ONNX-ML provides some 
support for ”traditional” 
ML and feature processing

• Still relatively new

• Difficult to keep up with 
breadth and depth of 
framework evolution

• Relatively poor support for 
feature processing and 
other data types (strings, 
datetime, etc)



Summary

• However there are risks

• PFA, ONNX still relatively young and needs to gain 
adoption

• Performance in production, at scale, is relatively 
untested

• Limitations of the various standards

• Can one standard encompass all requirements & 
use cases?

• If not, how to optimally use and combine each?

• Open standards for serialization and 
deployment of analytic workflows:

• True portability across languages, frameworks, 
runtimes and versions

• Execution environment is independent of the producer

• Solves a significant pain point for the 
deployment of ML pipelines in a truly open 
manner

Get involved - it’s open source, open governance!



44

Thank you!

codait.org

github.com/hougangliu

developer.ibm.com

http://ibm.biz/model-exchange

http://ibm.biz/max-developers FfDL

Sign up for IBM Cloud and try Watson Studio!

https://ibm.biz/Bd2NJG

MAX

http://ibm.biz/model-exchange
http://ibm.biz/max-developers
https://ibm.biz/Bd2NJG


45


