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My Controller Journey

• Started working on controllers 
six months ago

• Extensively used print 

statements

• People get used to it and 

move forward

• “New Hires” experience is bad



What’s wrong with print statements

• Seems simple at the beginning but silently eats developers time

• Not reliable

• Lacks big picture

• Very little information

• Extremely difficult to understand multi threaded applications

• Only works forward in time

• If not reviewed properly, it will end up in production code



The Debugger



What is a debugger anyway?
• Debugger is equivalent of Dr. 

Strange’s time stone for 
Developers

• It allows you to stop a program 

execution, move forward and 
backward in time.

• You will have access to all the 

information about the program 
sequenced 
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Patterns



Think out of the box

• Controller doesn’t need to run inside a 
container


• All we need is a connection to the Kubernetes 
API


• Client-go out-of-cluster configuration example

• Elevated access in your local operating system

• `kubectl` set context

• Controller code fetches kubernetes config from 

home directory and communicate with the API 
automatically


• 20% of work; 80% of productivity
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Demo



In-Cluster Controllers



Inside the kubernetes

• You may need to debug in customer’s 
kubernetes


• Your controller needs some resources 
running inside kubernetes


• Controller communication with 
Kubernetes API is automatic


• Package Debugger inside your 
controller image


• Expose Debugger TCP port
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Adding Debugger Support

FROM golang AS builder 
ENV CGO_ENABLED 0 
ADD . /go/src/controller 
RUN go get k8s.io/apimachinery/pkg/api/errors && \ 
    go get k8s.io/apimachinery/pkg/apis/meta/v1 && \ 
    go get k8s.io/client-go/kubernetes && \ 
    go get k8s.io/client-go/rest 
RUN go build -o /controller controller 

FROM alpine AS runner 
WORKDIR / 
COPY --from=builder /controller / 
ENTRYPOINT ["/controller"]

FROM golang AS builder 
ENV CGO_ENABLED 0 
ADD . /go/src/controller 
RUN go get k8s.io/apimachinery/pkg/api/errors && \ 
    go get k8s.io/apimachinery/pkg/apis/meta/v1 && \ 
    go get k8s.io/client-go/kubernetes && \ 
    go get k8s.io/client-go/rest 
RUN go get github.com/go-delve/delve/cmd/dlv 
RUN go build -gcflags "all=-N -l" -o /controller controller 

FROM alpine AS runner 
WORKDIR / 
COPY --from=builder /controller / 
COPY --from=builder /go/bin/dlv / 
ENTRYPOINT ["/dlv", \ 
            "--listen=:40000",\ 
            "--headless=true",\ 
            "--api-version=2",\ 
            "--accept-multiclient",\ 
            "exec", "/controller"] 
EXPOSE 40000

Production Dockerfile Debug Dockerfile



Expose Debugger Port

kubectl run controller-debug --image=ssurenr/samplecontroller:debug

kubectl expose deployment controller-debug --type="NodePort" --port 40000



Adding Debugger Support

{ 
  "version": "0.2.0", 
    "configurations": [ 
       { 
            "name": "K8SDebug", 
            "type": "go", 
            "request": "launch", 
            "mode": "remote", 
            "program": "${fileDirname}", 
            "port": 32393, 
            "host": "192.168.99.100", 
            "env": {}, 
            "args": [] 
        } 
    ] 
} 

Idea VS Code

.vscode/launch.json



Demo



Useful networking tips
• Proxies

• SSH Proxy

• Kubectl proxy

• Telepresence


• VPN

• VxLAN



Gotchas
• Some debuggers require you to build the controller from 

inside the go path to work correctly

• In some IDE, communicating over a remote host is a premium 

feature

• Create a different work flow for debugging in you CI/CD Build 

process

• Create a separate Make file action

• Keep the debugging Docker file separate



Summary

• Avoid using printf debugging

•Use a debugger

• Keep controller outside the k8s cluster for debugging

•Create an workflow for in-cluster controller

• Keep your production and debugging controllers separate

•Multiple ways to overcome networking issues




Links

https://github.com/ssurenr/controller

https://github.com/kubernetes/client-go

https://github.com/ssurenr/controller
https://github.com/kubernetes/client-go


Thank you
Surendhar

@devopsfun

@ssurenr

“Happy Controlling”


