

Debugging Kubernetes
Controllers from IDE
Surendhar Ravichandran
Sr. Software Engineer, F5 Networks

Agenda

• Background

• Short Introduction to Debugger

• Patterns to debug kubernetes controllers

• Demo

• Summary

My Controller Journey

• Started working on controllers
six months ago

• Extensively used print

statements

• People get used to it and

move forward

• “New Hires” experience is bad

What’s wrong with print statements

• Seems simple at the beginning but silently eats developers time

• Not reliable

• Lacks big picture

• Very little information

• Extremely difficult to understand multi threaded applications

• Only works forward in time

• If not reviewed properly, it will end up in production code

The Debugger

What is a debugger anyway?
• Debugger is equivalent of Dr.

Strange’s time stone for
Developers

• It allows you to stop a program

execution, move forward and
backward in time.

• You will have access to all the

information about the program
sequenced

Debugger Model

Debugger

App

TCP

Debugger Model

Debugger

Controller
IDE

Debugger 
Connection

Kubernetes
 API

API 
Connection

Patterns

Think out of the box

• Controller doesn’t need to run inside a
container

• All we need is a connection to the Kubernetes
API

• Client-go out-of-cluster configuration example

• Elevated access in your local operating system

• `kubectl` set context

• Controller code fetches kubernetes config from

home directory and communicate with the API
automatically

• 20% of work; 80% of productivity

Debugger

Controller

IDE

Kubernetes
 API

Local Dev Kubernetes

Demo

In-Cluster Controllers

Inside the kubernetes

• You may need to debug in customer’s
kubernetes

• Your controller needs some resources
running inside kubernetes

• Controller communication with
Kubernetes API is automatic

• Package Debugger inside your
controller image

• Expose Debugger TCP port

Debugger

Controller

IDE

Kubernetes
 API

Local Dev Kubernetes

Adding Debugger Support

FROM golang AS builder
ENV CGO_ENABLED 0
ADD . /go/src/controller
RUN go get k8s.io/apimachinery/pkg/api/errors && \
 go get k8s.io/apimachinery/pkg/apis/meta/v1 && \
 go get k8s.io/client-go/kubernetes && \
 go get k8s.io/client-go/rest
RUN go build -o /controller controller

FROM alpine AS runner
WORKDIR /
COPY --from=builder /controller /
ENTRYPOINT ["/controller"]

FROM golang AS builder
ENV CGO_ENABLED 0
ADD . /go/src/controller
RUN go get k8s.io/apimachinery/pkg/api/errors && \
 go get k8s.io/apimachinery/pkg/apis/meta/v1 && \
 go get k8s.io/client-go/kubernetes && \
 go get k8s.io/client-go/rest
RUN go get github.com/go-delve/delve/cmd/dlv
RUN go build -gcflags "all=-N -l" -o /controller controller

FROM alpine AS runner
WORKDIR /
COPY --from=builder /controller /
COPY --from=builder /go/bin/dlv /
ENTRYPOINT ["/dlv", \
 "--listen=:40000",\
 "--headless=true",\
 "--api-version=2",\
 "--accept-multiclient",\
 "exec", "/controller"]
EXPOSE 40000

Production Dockerfile Debug Dockerfile

Expose Debugger Port

kubectl run controller-debug --image=ssurenr/samplecontroller:debug

kubectl expose deployment controller-debug --type="NodePort" --port 40000

Adding Debugger Support

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "K8SDebug",
 "type": "go",
 "request": "launch",
 "mode": "remote",
 "program": "${fileDirname}",
 "port": 32393,
 "host": "192.168.99.100",
 "env": {},
 "args": []
 }
]
}

Idea VS Code

.vscode/launch.json

Demo

Useful networking tips
• Proxies

• SSH Proxy

• Kubectl proxy

• Telepresence

• VPN

• VxLAN

Gotchas
• Some debuggers require you to build the controller from

inside the go path to work correctly

• In some IDE, communicating over a remote host is a premium

feature

• Create a different work flow for debugging in you CI/CD Build

process

• Create a separate Make file action

• Keep the debugging Docker file separate

Summary

• Avoid using printf debugging

•Use a debugger

• Keep controller outside the k8s cluster for debugging

•Create an workflow for in-cluster controller

• Keep your production and debugging controllers separate

•Multiple ways to overcome networking issues

Links

https://github.com/ssurenr/controller

https://github.com/kubernetes/client-go

https://github.com/ssurenr/controller
https://github.com/kubernetes/client-go

Thank you
Surendhar

@devopsfun

@ssurenr

“Happy Controlling”

