

About us

• Sammi Chen – Senior software engineer from Tencent Cloud, Apache Hadoop Committer and PMC, working on Apache Hadoop HDFS/Ozone.

 Xiaoyu Yao – Principal software engineer from Cloudera, Apache Hadoop Committer and PMC, working on Apache Hadoop HDFS/Ozone.

Outline

- Big data evolution in cloud native environment
- Data Locality and why it matters
- Data locality in big data storage
 - Apache Hadoop HDFS
 - Apache Hadoop Ozone
- Apache Ozone in in Kubernetes
- Q&A

Big Data Evolution in Cloud Environment

Co-located Compute and Storage

- Pros
 - Fast storage access with locality
 - Less network traffic
 - Cost-effective for I/O intensive OLAP workloads (MapReduce/Hive/Impala)
- Cons
 - Limited Elasticity: Requirements for Storage nodes and compute node are different.
 - Elastically scale storage node with compute node is difficult and may not cost-effective.

YARN

HDFS

Big Data Evolution in Cloud Environment

- Separation of Compute and Storage
 - Pros
 - Elastically scale compute independent of storage
 - Cost-effective for compute-intensive workload(ML)
 - Cons
 - Lose storage locality
 - More network traffic for storage access
 - More CPU cycle (e.g., Erasure Coding)

Big Data Evolution in Cloud Environment

- Hybrid-Cloud and Multi-Cloud
 - Pros
 - Support locality for I/O intensive workload
 - Allow agile access, e.g., ML on multi-cloud
 - Cons
 - Cost
 - Compatibility

Challenges of Cloud Native Env for Big Data

Scheduler

Optimize resource utilization(CPU/GPU/Memory/etc.)

Networking

• Optimize bandwidth usage.

Storage

Optimize external storage access ?

Locality in Big Data

What is Locality?

Local Node: Data local to the compute node

Local Rack: Data in the same rack with the compute node

Local DC: Data in different rack/zone but closer to the compute node

Locality in Big Data - Benefit

- Higher throughput
- Less network traffic
- Fast job execution
- Better cluster utilization

Locality in Big Data - Scheduling

- Apache YARN
 - Support locality aware task scheduling via InputSplits
- Apache SPARK
 - Spark support locality aware scheduling of RDDs via spark.locality levels
 - PROCESS_LOCAL
 - NODE_LOCAL
 - RACK_LOCAL
 - ANY
 - Spark on K8s elastically schedule driver/executor pods with node selector

Locality in Big Data Storage (HDFS)

- Scalable Distributed File System
 - Fast file system metadata access (200K ops/s)
 - Hundreds PBs in capacity
 - Thousands of nodes per cluster
 - Scale horizontally
 - Strong consistency
 - Resilient to failures
 - •

Hadoop HDFS Locality Rack aware access

Hadoop HDFS Locality - Short Circuit Read

Apache HDFS in Kubernetes

- Challenges
 - Monolithic namenode
 - Small Files problem
 - 300 million+ files need special GC tuning
 - Take long time to upgrade/restart
 - Expose datanode locality
- Opportunities
 - Cloud native storage orchestra
 - Existing big data workload: Analytic/IoT/Streaming, etc.
 - Upgradable from existing HDFS clusters with hundreds or thousands of nodes.

Locality in Big Data – Storage (Apache Ozone)

- Scaling to billions of objects of varying sizes.
- Decoupled micro-services that support Kubernetes deployment.
- Support topology aware data placement and access.
- Support S3 access
- Support in-place upgrade from HDFS

• ...

Apache Ozone Overview

Apache Ozone Topology

Apache Ozone Locality

- Highly customizable topology schema
 - /DataCenter/NodeGroup/Rack/Datanode.
- Topology aware access policy
 - Ozone manager returns topology ordered datanodes list for client access
 - Client access block/chunks of the objects from the closest datanodes
- Topology aware placement policy
 - Trade-off between reliability and performance.

Customize Ozone Topology


```
type: ROOT
#.Layer.name
defaultName: root
# Sub layer
# The sub layer property defines as a list which can reflect a node tree, though
# in schema template it always has only one child.
sublayer:
    cost: 1
    prefix: dc
    defaultName: datacenter
    type: INNER_NODE
    sublayer:
        cost: 1
        prefix: rack
        defaultName: rack
        type: INNER_NODE
        sublayer:
              cost: 1
              prefix: ng
              defaultName: nodegroup
              type: INNER_NODE
              sublayer:
                  defaultName: node
                  type: LEAF_NODE
                  prefix: node
```

Apache Ozone Topology aware Read

Rack1

DN1

Ozone Manager

Apache Ozone Topologyaware Write

Apache Ozone in Kubernetes

Apache Ozone S3 Gateway

Apache Ozone in Kubernetes RoadMap

- Hadoop Compatible File System (Ozone-0.2.1)
 - Natively support Spark/Yarn/Hive
- Ozone S3 Gateway (Ozone-0.3.0)
 - Access Ozone via S3 API
 - Horizontally scalable with multiple stateless S3 gateways
- Ozone Deployment in Kubernetes (Ozone-0.4.0)
 - Customizable resource definition for ozone services
 - Support Spark + Ozone on Kubernetes

Apache Ozone in Kubernetes RoadMap

- Ozone CSI driver (Ozone-0.4.1)
 - Mount Ozone S3 bucket as CSI volume
 - Consumed as raw Kubernetes Storage
- Ozone Operator
 - Rook integration as storage provider in Rook
 - https://github.com/rook/rook/issues/3235

Apache Hadoop Ozone

https://hadoop.apache.org/ozone

Xiaoyu Yao

xyao@apache.org

Sammi Chen

sammichen@tencent.com