


Understanding Scalability and 
Performance in the Kubernetes Master

Xingyu Chen, Fansong Zeng Alibaba Cloud



Agenda

l Background

l Kubernetes in Alibaba

l Experience on scalability
l etcd/apiserver/controller

l Q&A



Background
It is a long story…

AI

AliSwarm

Zeus

Hippo

Sigma Kubernetes

2013 2015 2017 2018



Kubernetes in Alibaba

l Production environment
l 10, 000s of applications
l 1, 000, 000s of containers

l 10s of clusters
l 100, 000s of nodes
l 10, 000 nodes / largest cluster Host Host Host



Experience on scalability

# Pods              ~200k

A 10k nodes cluster

# Latency         ~10s

# Objects         ~1000k
Pod

hollow-nodehollow-nodehollow-node

hollow-nodehollow-nodehollow-node

Pod

Production Cluster
Performance

Analysis
Cluster



Experience on scalability
1 read/write latency spike
2 too many request ddos
3 unable to write when hitting storage limit

Fail restart slowly

Scheduler throughput low

get pods/nodes latency very slow

Controller can’t catch up



etcd

1.0 etcd over tair

2.0 etcd data sharding

• Boost storage limit
• Level up data isolation



Segregated hashmap algorithm 

etcd

Boost performance
of single etcd cluster



Efficient node heartbeats
l Kubelet send hearbeats every 10s

l 15kb with tens of images and volumes

etcdtransaction log ~1GB/min CPU 
overload larger than 80%



Efficient node heartbeats
l Add a new `Lease` build-in API

Lease

Node
ObjectKubelet Node

Controller

update every 10s

grace period 40s

update every 10s

update every 60s

Lease objects ~100 bytes Enabled @ 1.14



API Server load balancing

apiserver

etcd

scheduler

controller

kubelet

autopilot

pouch

master nodes slave nodes

system daemon

containers

l 3 nodes HA cluster

upgrades
failures



API Server load balancing

l Add a load balancer ?

apiserver

lb

apiserver apiserver

kubelet kubelet kubelet

apiserver

lb

apiserver apiserver

kubelet kubelet kubelet
lb lb

(1) (2)



API Server load balancing

l try hard to reuse tls connection

client-go will never 
connect to another 
apiserver unless the 
connected one has 
failed.

apiserver

kubelet client
Interface

persistent 
connection

watch channel

watch VHUYHU

watch server
apiserver

kubelet
watch channel

get, list, watch

root cause

Throttling:
1. send ‘too many requests ’ when exceeded the low
2. send ‘Connection: close’ when exceeded the high

Retry:
1. try another server if there are too many ‘too many 
requests ’ 
2. try another server after several minutes 

Upgrade with 
{maxSurge=3}



List-Watch & Cacher

l Key communication mechanisms between client and server

API Serveretcd

pod a

node b

pod c

5

6

7

updates

Cache

deltas

Informer

Controllers/Kubelets

Reflector

watch

Store

watch

Reflector



List-Watch & Cacher

l What happens if the connection is broken ?

API Server Informer

Kubelets

Cache Store

rv=5deltas

watch

2
4
5
7
8
9

2

5

pods rv=5

2
4

5
7
8
9

API Server
Queue

11
12

....

too old version err

pods

Reflector



List-Watch & Cacher

l Watch `bookmark`

API Server Informer

Controllers/Kubelets

Cache Store

rv=5deltas
watch

2
4
5
7
8
9

2

5

pods

2
4

5
7
8
9

11
12

....

API Server
Queue

bookmark rv=12

released at 1.15

rv=12

Reduce to 3%



List-Watch & Cacher

l Improve cache to serve read requests

etcd

API Server

Cache

rv

Reflector

deltas
watch

API Server
Get/List

Informer

1. Unable to support indexing
2. Page reading Client

Get/List



List-Watch & Cacher

l Improve cache to serve read requests

etcd

Client

API Server

Cache

rv

Reflector

deltas

Get/List

watch

API Server

synchronize by
1. request current rv@t0
2. waiting for updates

Add indexers:
1. nodename
2. namespace
3. labels

……

t0

5s

describe node 

0.3s



Controller failover

l Restarting controllers takes several minutes

API Server

Cache

deltas

Informer

Controllers

Store

watch

Reflector

1. Millions of objects
2. Several GBs

Controllers

leader
electing

Informer

Store
Reflector

Release Lease
on SIGTERM

MTTR Reduce to
several seconds



Q&A

THANK YOU

�����������
�

���
��������������

�	
�



Customized scheduler

l Equivalence classes
Pending
Queue

l Relaxed randomization
Predicates

Priorities


