

Why is Cloud-Native Application
Development Still So Hard ?

Venugopal Reddy K (Lead Architect, Huawei)
Irene Zhang (Univ. of Washington, &
Microsoft Research)

Integrating the Amino OS Distributed Cloud-native Programming
Platform with Kubernetes (github.com/Amino-OS)

Overview

A brief history
of the

(microservice)
universe

App devs ≠
Sys devs ≠
SREs

Amino OS from
30,000’

Amino.Run: How
it Works

Amino.Run:
Evaluation and

some Data

Demo,
Remaining

Challenges +
Q&A

1.
A Brief History of the

(Microservice) Universe

Once upon a time, applications were..

OSOS

• single user
• single
platform

• single node

Life was good for mere mortal app devs…

OSOS

• Single-machine OS’s work well

• Local procs, virtual memory, files,
locks...

• Pick one (or two?) good
programming languages

• App devs could understand their
platform

OSOS

Then “Suddenly” Everything
Changed…

7

• Cloud
Computing

• “Mobile-first”

• Ubiquitous
Connectivity
(Wifi... 3G…
4G… 5G…)

OSOS OSOS

OSOS

So Now Today’s Applications are Very
Different…

8

• Multi-user,
• Multi-

platform,
• Multi-

language,
• Multi-node,
• Always-on,
• Autoscaling,
• Distributed

Systems
Nightmares!

OSOS OSOS

So Containers, Kubernetes and Microservices Saved the
Day

 Apps could be:

• Decomposed into independently
deployable Containers

• Programatically orchestrated, driven by
declarative configuration

• Developed in many different languages
Java/Kotlin for Android, ObjC/Swift for IOS,
Go/Java/Python/C/C++/… for Linux/Windows...

• Hooked together using service meshes
Linkerd, Envoy, Istio…

• Configured, deployed, monitored and
upgraded by expert devops/SREs (basically
Ninjas).

Turns out, it’s still really, really difficult…

• distributed concurrency,
synchronization,

• reliable RPC, fault tolerance,
• replication, leader election,

sharding,
• code and data migration,
• observability, fault diagnosis
• As well as all the obvious
• remote invocation, load balancing,

etc…

Developers still have to write
the (really hard) stuff in the

containers:

These sound like
distributed systems

problems!

2.
App devs ≠
Sys devs ≠

SREs

App Devs
• Know their app

domain very well.
• Social

Networking
• Travel
• Finance
• …

• Need to move really
fast.

• Don’t give a hoot
about distributed
systems algorithms,
exponential backoff,
PAXOS/Raft,...

Sys Devs
● Are really interested

in understanding and
solving hard
distributed systems
problems.

● Are in very short
supply.

● Typically don’t
understand your
specific business
needs.

SREs/DevOps Engineers
● Understand what

happens when your
specific customers hit
your specific app, e.g.
○ Capacity/scaling

requirements
○ Optimal sharding

schemes
○ What breaks and

why.
○ What needs to be

replicated, updated
etc and how.

Specialization..
.

3.
Amino OS from 30,000’

What is Amino OS?

● Amino.Run: A distributed microservice runtime (we’ll focus on this
today).

● Amino.Sync: A reactive data synchronization service that provides
configurable consistency guarantees

● Amino.Store: A distributed transactional storage service

● Amino.Safe: A distributed privacy and security manager

Amino OS is an umbrella project, the goal of which is
to create a distributed platform for coding and
running distributed (cloud, edge and mobile)
microservice-based applications. It has four main
components:

Amino OSDistributed Cloud-native Application Programming Platform

.

Central
Cloud
Server

Central
Cloud
Server

Edge
Cloud
Server

Edge
Cloud
Server

Mobile
Device
(Phone)

Mobile
Device
(IoT)

OS OS OS OS OS OS

Distributed Cloud-native Application Programming Platform

Amino.Run
(Process
Manager)

Amino.Sync
(Memory
Manager)

Amino.Store
(Storage
System)

Amino.Safe
(Security
System)

Distributed Cloud-native Application

Users (often
mobile)

What is Amino OS?

● Amino OS is based on several years of distributed systems research done by Irene
and her team at the University of Washington Systems Lab in Seattle, WA.

● Amino OS is the result of 2 years of collaboration between Quinton, Venu and Irene’s
teams.

We’ll Focus on Amino.Run
in this Talk

• Goals
• Architecture and How it Works
• Deployment Managers
• Experience and Evaluation
• Demo
• Q&A

Amino.Run Goals

19

1. Separate application logic from deployment code.

2. Make application code very simple and intuitive

3. Allow devs and SRE’s to easily make, combine and change automated
application deployment choices across arbitrary servers and devices (cloud,
edge, mobile, IoT etc)

4. Support arbitrary programming languages

5. Performance!

6. Optionally integrate with external infrastructure systems (like Kubernetes,
Istio etc) in a very natural way.

Our Solution

20

A new system architecture that
supports:

• pluggable and extensible deployment
managers

• across arbitrary programming languages

• and operating systems

Amino.Run Architecture

21

Sapph
ire

Object

Sapph
ire

Object
Distributed ApplicationDistributed Application

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
ServerDeployment Management LayerDeployment Management Layer

Deployment KernelDeployment Kernel

OSOSOSOS OSOS

Partitioned into Microservices, which:

 Run in a single address space with RPC.

 Execute anywhere and move transparently.

 Provide a unit of distribution for deployment managers.

 May be written in any programming language (using GraalVM)

 Can pass data structures transparently between programming
languages (using GraalVM Polyglot)

23

Amino.Run ApplicationAmino.Run Application

A brief word about multi-language and GraalVM

 High-performance
polyglot VM (think JVM)

 Native via Ahead-of-
Time compilation, or JIT

 Embeddable

 Allows Microservices,
Amino Kernel and DMs
all in different languages

Amino.RunArchitecture

25

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

Distributed ApplicationDistributed Application

Deployment Management LayerDeployment Management Layer

Deployment KernelDeployment Kernel

OSOSOSOS OSOS

Provides best-effort distribution services,
including:

 Microservice instantiation, tracking, mobility
and replication.

 Making and routing RPC to Microservice
replicas.

 Managing, distributing and running
deployment managers.

26

Deployment KernelDeployment Kernel

Amino.Run Architecture

27

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
ServerDeployment Management LayerDeployment Management Layer

DK
Server

DK
Server

DK
Server

DK
Server

OTS
Server
OTS

ServerDeployment KernelDeployment Kernel

OSOSOSOSOSOS

Consists of deployment managers, which:

 Extend the functions and guarantees of the deployment kernel.

 Sharding, Method Replication, Caching etc

 Interpose on Microservice calls and events.

 Easy to choose and change without modifying the application.

 Can be arbitrarily combined! (with some obvious restrictions)

 E.g. Replicated shards, Transactional replicas, Retries over
sharded transactions, etc…

28

Deployment Management LayerDeployment Management Layer

Amino.Run Architecture

29

ReplicationReplication Code-
offloading

Code-
offloadingLease CachingLease CachingDeployment Management LayerDeployment Management Layer

DK
Server

DK
Server

DK
Server

DK
Server

OSOSOSOS

OTS
Server
OTS

Server

OSOS

Sapphire Deployment Manager
Library

Immutable

AtLeastOn
ce RPC

Keep In
Place

Keep On
Device

Keep In
Cloud

Primitives

Explicit
Caching

Lease
Caching

Writethrou
gh

Caching
Consistent
Caching

Caching

Serializabl
e RPC

Locking
Transactio

ns
Optimistic
Transactio

ns

Serializabili
ty Explicit

Checkpoin
t

Periodic
Checkpoin

t
DurableRP

C
Durable

Transactio
ns

Checkpoint

RSM-
Cluster

RSM-Geo

RSM-P2P

Replication

Explicit
Migration

Dynamic
Migration
Explicit
Code-
offload
Code-
offload

Mobility
LoadBalan

ced
Frontend
Scale-up
Frontend

LB Master-
slave

Scalability

Extensible with the Sapphire Deployment Manager
API!

31

Outline

32

1. Architecture

2. Deployment
Managers

3. Experience and
Evaluation

Deployment Manager
API

Deployment Manager (“DM”) components, which the
Amino.Run kernel creates, deploys and invokes
automatically:

 Server-Side DMs: Co-located with the Microservice
Replica (i.e. process).

 Client-Side DMs: Co-located with remote references to
the Microservice.

 Group Coordinator DMs: Co-located with fault-tolerant
Microservice Management Service (MMS aka OMS).

33

Server DMServer DM

Micro-
service
Replica

Micro-
service
Replica

Group DMGroup DM

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

OSOSOSOS OSOS

ReplicationReplication

Micro-
servic

e

Micro-
servic

e

Server DMServer DM

Micro-
service
Replica

Micro-
service
Replica

Client
DM

Client
DM

Stu
b

Stu
b

Client
DM

Client
DM

Stu
b

Stu
b

Deployment Manager
Architecture

Deployment Manager
Architecture

Server DMServer DM

Micro-
service
Replica

Micro-
service
Replica

Leader
Client

DM

Client
DM

Stu
b

Stu
b

ReplicationReplication

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

OSOSOSOS OSOS

Micro-
servic

e

Micro-
servic

e

Server DMServer DM

Micro-
service
Replica

Micro-
service
Replica

Server DMServer DM

Micro-
service
Replica

Micro-
service
Replica

Replicating a MicroserviceReplicating a Microservice

Server DMServer DM

Client
DM

Client
DM

Server DMServer DM

Micro-
service

Micro-
service

Cloud

Micro-
service

Micro-
service

Stu
b

Stu
b

Micro-
servic

e

Micro-
servic

e

Offloading a MicroserviceOffloading a Microservice

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

OSOSOSOS OSOS

 See more in the demo later.

 Automatic Object Migration – Stateful
Offloading

Stu
b

Stu
b Micro-

servic
e

Micro-
servic

e

CachingCaching

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

DK
Server

OSOSOSOS OSOS

Client
DM

Client
DM

Micro-
service

Micro-
service

Caching a Microservice stateCaching a Microservice state

Server DMServer DM

Micro-
service

Micro-
service

Master

Outline

39

1. Sapphire
Architecture

2. Deployment
Managers

3. Experience and
Evaluation

Dell Server Nexus 7 Nexus S

 8-core
Intel Xeon

2GHz

 4-core
 ARM Cortex
 A9

1.3GHz

 1-core
 ARM Cortex
 A8

1GHz
8GB 1GB 512MB

OS

Experimental Setup

40

Peer-to-Peer Multiplayer Game

41

Play... Play... Play... Play... Play... Play...
0

8

15

23

30

Read Write
m

ili
se

co
n
d
s

Keep In
Cloud

Keep On
Device RSM-P2P

Base WiFi 4G

Network

Code-offloading for Physics Engine

42

1190 ms

Base WiFi 4G
0

100

200

300

400

500

m
ill

is
e
co

n
d

s

Phone Tablet

Summary

43

Modern applications implement difficult
distributed deployment tasks.

Amino.Run is a new programming system for
deploying interesting distributed
applications including cloud-native,
mobile/cloud, edge/cloud.

Deployment managers makes it easy to
choose, combine, and customize deployment
options.

• Migrating state that’s not inside the application or Amino
system (e.g. local files, Linux timers etc).
• Some rough edges between certain language combinations.
• Additional plugins for external systems (Istio, etcd, TiKV,
etc)
• Federations and disconnected Edge scenarios.

Next Steps?

44

Get Involved

Slack Channel: Amino-OS.slack.com

Web site: www.Amino-OS.io

Contributions most welcome

Repo:github.com/Amino-OS/Amino.Run

45

http://www.Amino-OS.io/

Demo
Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

