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1. 
A Brief History of the 

(Microservice) Universe



Once upon a time, applications were..

OSOS

• single user
• single 
platform

• single node



Life was good for mere mortal app devs…

OSOS

• Single-machine OS’s work well 
 

• Local procs, virtual memory, files, 
locks...
 

• Pick one (or two?) good 
programming languages
 

• App devs could understand their 
platform



OSOS

Then “Suddenly” Everything 
Changed…
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• Cloud 
Computing
 

• “Mobile-first”
 

• Ubiquitous 
Connectivity 
(Wifi... 3G… 
4G… 5G…)

OSOS OSOS



OSOS

So Now Today’s Applications are Very 
Different…
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• Multi-user, 
• Multi-

platform,
• Multi-

language,
• Multi-node,
• Always-on,
• Autoscaling,
• Distributed 

Systems  
Nightmares!

OSOS OSOS



So Containers, Kubernetes and Microservices Saved the 
Day

   Apps could be:

• Decomposed into independently 
deployable Containers

• Programatically orchestrated, driven by 
declarative configuration

• Developed in many different languages
Java/Kotlin for Android, ObjC/Swift for IOS, 
Go/Java/Python/C/C++/… for Linux/Windows...

• Hooked together using service meshes
Linkerd, Envoy, Istio…

• Configured, deployed, monitored and 
upgraded by expert devops/SREs (basically 
Ninjas).



Turns out, it’s still really, really difficult…

• distributed concurrency, 
synchronization, 

• reliable RPC, fault tolerance, 
• replication, leader election, 

sharding, 
• code and data migration,
• observability, fault diagnosis
• As well as all the obvious 
• remote invocation, load balancing, 

etc…

Developers still have to write 
the (really hard) stuff in the 

containers:



These sound like 
distributed systems 

problems!



2.
App devs ≠ 
Sys devs ≠ 

SREs



App Devs
• Know their app 

domain very well.
• Social 

Networking
• Travel
• Finance
• …

• Need to move really 
fast.

• Don’t give a hoot 
about distributed 
systems algorithms, 
exponential backoff, 
PAXOS/Raft,...

Sys Devs
● Are really interested 

in understanding and 
solving hard 
distributed systems 
problems.

● Are in very short 
supply.

● Typically don’t 
understand your 
specific  business 
needs.

SREs/DevOps Engineers
● Understand what 

happens when your 
specific customers hit 
your specific app, e.g.
○ Capacity/scaling 

requirements
○ Optimal sharding 

schemes
○ What breaks and 

why.
○ What needs to be 

replicated, updated 
etc and how.

Specialization..
.



3.
Amino OS from 30,000’



What is Amino OS?

● Amino.Run: A distributed microservice runtime (we’ll focus on this 
today).
 

● Amino.Sync: A reactive data synchronization service that provides 
configurable consistency guarantees
 

● Amino.Store: A distributed transactional storage service
 

● Amino.Safe: A distributed privacy and security manager

Amino OS is an umbrella project, the goal of which is 
to create a distributed platform for coding and 
running distributed (cloud, edge and mobile)  
microservice-based applications. It has four main 
components:



Amino OSDistributed Cloud-native Application Programming Platform

.
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What is Amino OS?

● Amino OS is based on several years of distributed systems research done by Irene 
and her team at the University of Washington Systems Lab in Seattle, WA.

● Amino OS is the result of 2 years of collaboration between Quinton, Venu and Irene’s 
teams.



We’ll Focus on Amino.Run 
in this Talk

• Goals
• Architecture and How it Works
• Deployment Managers
• Experience and Evaluation
• Demo
• Q&A



Amino.Run Goals
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1. Separate application logic from deployment code.

2. Make application code very simple and intuitive

3. Allow devs and SRE’s to easily make, combine and change automated 
application deployment choices across arbitrary servers and devices (cloud, 
edge, mobile, IoT etc)

4. Support arbitrary programming languages

5. Performance!

6. Optionally integrate with external infrastructure systems (like Kubernetes, 
Istio etc) in a very natural way.



Our Solution
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A new system architecture that 
supports:

• pluggable and extensible deployment 
managers

• across arbitrary programming languages

• and operating systems



Amino.Run Architecture
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Partitioned into Microservices, which:

 Run in a single address space with RPC.

 Execute anywhere and move transparently.

 Provide a unit of distribution for deployment managers.

 May be written in any programming language (using GraalVM)

 Can pass data structures transparently between programming 
languages (using GraalVM Polyglot)
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Amino.Run ApplicationAmino.Run Application



A brief word about multi-language and GraalVM

 High-performance 
polyglot VM (think JVM)

 Native via Ahead-of-
Time compilation, or JIT

 Embeddable

 Allows Microservices, 
Amino Kernel and DMs 
all in different languages



Amino.RunArchitecture
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Provides best-effort distribution services, 
including:

 Microservice instantiation, tracking, mobility 
and replication.

 Making and routing RPC to Microservice 
replicas.

 Managing, distributing and running 
deployment managers.
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Deployment KernelDeployment Kernel



Amino.Run Architecture
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Consists of deployment managers, which:

 Extend the functions and guarantees of the deployment kernel.

 Sharding, Method Replication, Caching etc

 Interpose on Microservice calls and events.

 Easy to choose and change without modifying the application.

 Can be arbitrarily combined! (with some obvious restrictions)

 E.g. Replicated shards, Transactional replicas, Retries over 
sharded transactions, etc…
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Deployment Management LayerDeployment Management Layer



Amino.Run Architecture
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Sapphire Deployment Manager 
Library
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Outline
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1. Architecture

2. Deployment 
Managers

3. Experience and 
Evaluation



Deployment Manager 
API

Deployment Manager (“DM”) components, which the 
Amino.Run kernel creates, deploys and invokes 
automatically:

 Server-Side DMs: Co-located with the Microservice 
Replica (i.e. process).

 Client-Side DMs: Co-located with remote references to 
the Microservice. 

 Group Coordinator DMs: Co-located with fault-tolerant 
Microservice Management Service (MMS aka OMS).
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 See more in the demo later.

 Automatic Object Migration – Stateful 
Offloading
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Outline
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1. Sapphire 
Architecture

2. Deployment 
Managers

3. Experience and 
Evaluation



Dell Server Nexus 7 Nexus S

    8-core
Intel Xeon

2GHz

      4-core
  ARM Cortex  
        A9

1.3GHz

     1-core
  ARM Cortex   
         A8

1GHz
8GB 1GB 512MB

OS    

Experimental Setup
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Peer-to-Peer Multiplayer Game
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Base WiFi 4G

Network

Code-offloading for Physics Engine
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Summary
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Modern applications implement difficult 
distributed deployment tasks.

Amino.Run is a new programming system for 
deploying interesting distributed 
applications including cloud-native, 
mobile/cloud, edge/cloud.

Deployment managers makes it easy to 
choose, combine, and customize deployment 
options.



• Migrating state that’s not inside the application or Amino 
system (e.g. local files, Linux timers etc).
• Some rough edges between certain language combinations.
• Additional plugins for external systems (Istio, etcd, TiKV, 
etc)
• Federations and disconnected Edge scenarios.

Next Steps?
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Get Involved

Slack Channel: Amino-OS.slack.com

Web site: www.Amino-OS.io

Contributions most welcome

Repo:github.com/Amino-OS/Amino.Run
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http://www.Amino-OS.io/


Demo
Q & A
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