

Unfit Story of Fitness Trackers :
Hacking the BLE devices

Yogesh Ojha

● Cyber Security Analyst @ TCS, India
● IOT & Mobile Application Security

Expectations
You can expect to learn about:

● Basic Understanding of Bluetooth
● Bluetooth Classic vs Bluetooth Low Energy
● BLE Stack
● Capturing BLE Packets/BLE MiTM
● Reverse Engineering the Mobile Applications of Fitness trackers
● Uploading the firmware over the air

Bluetooth Story...
Bluetooth is a short-range wireless communication protocol and allows devices such as
smartphones, headsets, to transfer data and/or voice wirelessly.

Developed in 1994 as a replacement for cables.

Uses 2.4GHz frequency and creates 10 meters radius called piconet!

Bluetooth Low Energy
(4.0)

Bluetooth low energy aka Bluetooth Smart

● Designed to be power efficient
● Low cost and easy to implement
● Used in sensors, lightbulbs, medical devices, wearables and many other “smart”

products.

Bluetooth classic vs BLE

`

Bluetooth Classic Bluetooth Low Energy

● Great for products that requires
continuous streaming of data

● High power consumption
● Faster data rate
● High application throughput
● Best Suited for:

○ Headsets, Speakers
○ Bluetooth Hotspot etc

● Great for products that do not
require continuous streaming of
data.

● Ultra low power consumption
● Slower Data rate
● Low application throughput
● Best Suited for:

○ Home Automation
○ Fitness trackers etc

It is designed to operate in sleep mode and
waken up only when connection is initiated.
Like maybe your light is on or off or a quick
command to turn on or off the light.

Bluetooth Low Energy
(4.0)

Fitness Tracker - BLE Applications

BLE Stack

● Generic Attribute Profile (GATT)

● Generic Access Profile(GAP)

Applications Apps

Generic Access Profile

Generic Attribute Profile

Attribute Protocol

Logical Link Control & Adaptation Protocol

Applications

Security Manager

Host Control Interface

Link Layer Direct Test

Physical Layer

HOST

Controller

Generic Attribute Profile (GATT)

GATT defines the way that these BLE devices communicate with each (client & server)
other using something called Services and Characteristics.

Here Connections are Exclusive! Means your BLE peripheral can only be connected to
one central device at a time! It will stop advertising itself and other devices will no
longer be able to see it or connect to it until the existing connection is broken.

Services & Characteristics

Services: Set of provided features and associated
behaviors to interact with the peripheral. Each service
contains a collection of characteristics.

Characteristics: Characteristics are defined attribute
types that contain a single logical value.

Services & Characteristics

Basic Process

0. Select the target
a. Install Bluez stack, hcitool & gattool

1. Enumerate the services and characteristics
a. Do the scan using hcitool
b. Connect using gatttool
c. List all the services and characteristics

2. Reverse Engineer the mobile application (if any)
a. For reverse engineering android application use apktool.

3. Finally do some cool stuff!

0. Selecting the target

Goal: Finding the BLE devices near the vicinity
Tools Used: Bluez, hcitool, gatttool

Install Bluez: $ sudo apt-get install bluez
Install Hcitool: hcitool comes preinstalled with bluez stack

Scanning for BLE Devices

1. Enumerate the services and
characteristics

sudo gatttool -b <BLE ADDRESS> -I

>connect

List down all primary services

> primary

List down all characteristics

> characteristics

Sniffing BLE Packets

Ubertooth
● Works great for both Classic and BLE
● Open Source Hardware/Software
● About $100

CC2540
● Cheaper but limited configuration
● About $50

Alternate to Sniffers

● Enable Developer Option
● Enable Bluetooth HCI Snoop Log
● $ adb pull /sdcard/btsnoop_hci.log

Authentication in BLE devices

3 devices, out of 5 devices that I tested, did not implement link layer encryption.

2 devices, out of 5 devices that I tested, did not have authentication!!!

Send some Notification? ;)

First Two Byte is Notification Type
01 -> Email
03 -> Call
04 -> Missed Call
05 -> SMS/MMS

Next Two Byte is numbers of notification
And remaining is the hex value of the
notification title that you are sending.

Send some Notification? ;)

Firmware

My aim was to display this!

Firmware

A firmware is a piece of Software that runs on embedded CPU!

How do I get firmware?
Reverse Engineering the Mobile application maybe? Or during the DFU update?

Let’s reverse engineer the mobile application!

$ apktool d cool_app.apk

Uploading the firmware

How does firmware upload works?
For this fitness tracker

● Initialize the firmware/resource Update On Characteristic 1531 with write command of
4-byte

● \x01 + fileSize in Hex(3-byte)
● But, for the resource, its 5-byte!

\x01 + fileSize in Hex(3-byte) + \x02
● Last byte \x02 is for letting the firmware update service know that it's a resource and

not the firmware file.

Doesn’t accept 0x5EFAC but accepts 0xAcEF05

How does firmware upload works?
For this fitness tracker

What is Checksum?
Calculated value that is used to determine the integrity of data during the transmission.

BLE does not perform error correction but can only perform error detection. Bluetooth
5.0 introduces error correction.

How does firmware upload works?
For this fitness tracker

Once the CRC is calculated, write the checksum to Characteristic “XXXX” of 3 bytes.
The checksum must begin with \x04 and your checksum value
\x04 + checksum
If the checksum matches the resource will be accepted and updated. But for firmware,
you need to send reboot command as well.
On Characteristic “XXXX” send \x05 for the reboot.

And yes, the firmware update is done!

What about the skull Icon? ;)

Q&A
More about this hack is on Medium & Github!
https://medium.com/@yogeshojha

https://github.com/yogeshojha/MiBand3/

https://medium.com/@yogeshojha
https://github.com/yogeshojha/MiBand3/

