

7 Missing Factors for Your Production-Quality 12-Factor Apps

Michael Elder
IBM Distinguished Engineer - IBM Multicloud Platform
@mdelder

Shikha Srivastava
IBM Senior Technical Staff Member
@shikhasthoughts

What is Ready for production application

• Secure
• Installation, authentication and access

• Resilient, Highly Available and scale
• Repeated deployment

• with safe upgrades and configuration
changes

• Performance
• Observable
• Upgradeable
• more …..
• And AGILE too

What	is	a	
12-factor	

app?

• “12-Factor”	is	a	software	
methodology	for	building	scalable	
microservice	applications

• Originally	created	by	Heroku

• Best	practices	designed	to	enable	
applications	to	be	built	with	
portability,	resilience,	and	
scalability	when	deployed	to	the	
web

Kubernetes&	12-factor	apps

5

I.	Codebase
One	codebase	tracked	in	revision	control,	many	deploys
II.	Dependencies
Explicitly	declare	and	isolate	dependencies
III.	Config
Store	config in	the	environment
IV.	Backing	services
Treat	backing	services	as	attached	resources
V.	Build,	release,	run
Strictly	separate	build	and	run	stages
VI.	Processes
Execute	the	app	as	one	or	more	stateless	processes
VII.	Port	binding
Export	services	via	port	binding
VIII.	Concurrency
Scale	out	via	the	process	model
IX.	Disposability
Maximize	robustness	with	fast	startup	and	graceful	shutdown
X.	Dev/prod	parity
Keep	development,	staging,	and	production	as	similar	as	possible

XI.	Logs
Treat	logs	as	event	streams
XII.	Admin	processes
Run	admin/management	tasks	as	one-off	processes

Why	
12	factor	

apps?
• Make it easier to run, scale, and

deploy applications
• Keep parity between development

and production
• Provide strict separation between

build, release, and run stages

I.	Codebase
One	codebase	tracked	in	revision	
control,	many	deploys

II.	Dependencies
Explicitly	declare	and	isolate	
dependencies

III.	Config
Store	config in	the	environment

IV.	Backing	services
Treat	backing	services	as	attached	
resources

V.	Build,	release,	run
Strictly	separate	build	and	run	
stages

VI.	Processes
Execute	the	app	as	one	or	more	
stateless	processes

VII.	Port	binding
Export	services	via	port	binding

VIII.	Concurrency
Scale	out	via	the	process	model

IX.	Disposability
Maximize	robustness	with	fast	
startup	and	graceful	shutdown

X.	Parity	between	dev	&	prod
Keep	development,	staging,	and	
production	as	similar	as	possible

XI.	Logs
Treat	logs	as	event	streams

XII.	Admin	processes
Run	admin/management	tasks	as	
one-off	processes

Code Deploy Operate

Developers dream – Code factors

7

• One codebase for my application
tracked in revision that runs
anywhere: build, ship and run
anywhere

AND
• I can offload deployment, HA,

scaling, upgrade strategy and not
worry about it

Test	and	
automati
on

Release AGILE

Design

• Container Images built from
Dockerfiles using trusted small image.
Kubernetes Deployments, etc
managed as YAML (F#I- Codebase)

• Having a strong artifact-driven model
makes it easier to follow a
Continuous Delivery lifecycle (F#V-
Build, release, run)

• Using the same images and YAML
objects make it easier for dev teams
to match what’s running in
production
(F#X- Dev/prod parity)

Develop

Operate factors: Concurrency (F#VIII) &
Disposability (F#IX)

• Ensure scale for your app
• Replica set ensures specified number of pods are always

running
kind:	Deployment
metadata:
name:	 nginx
spec:
replicas:	 2
template:
metadata:
labels:
service:	 http-server

spec:
containers:
- name:	nginx
image:	nginx:1.10.2
imagePullPolicy:	 IfNotPresent
ports:
- containerPort:	 80

• Is this enough?
Remember load is never constant in the real world

Operate factors: Concurrency (F#VIII)

Leverage autoscaling to automate computation resources based on load

• Horizontal Pod Scaler (HPA)
• Controls the number of replicas
• Use cpu or memory as a trigger or use

custom metric
• Applicable for stateless app

• Vertical Pod Scaler (VPA)
• Controls the memory and cpu for pod
• Use cpu or memory as a trigger or use

custom metric
• Applicable for statefull apps

10

7	
missing	
factors	

XIII.	Observable
Apps	should	provide	visibility	about	current	health	and	metrics

XIV.	Schedulable
Apps	should	provide	guidance	on	expected	resource	constraints

XV.	Upgradable
Apps	must	upgrade	data	formats	from	prior	generations

XVI.	Least	privileged
Apps	should	provide	guidance	on	expected	resource	constraints

XVII.	Auditable
Apps	should	provide	appropriate	audit	logs	for	compliance	needs

XVIII.	Access	Control	(Identity,	Network,	Scope,	Certificates)
Protect	app	and	resources	from	the	world

XIX.	Measurable
Apps	usage	should	be	measurable	for	quota	or	chargebacks

7	missing	factors	from	12	factor	application

Observable: Application health (F#XIII)

Know	your	application	health

• Kubernetes	probes
• Is	the	app	ready	to	accept	

traffic?:	Readiness

• Is	the	app	responsive?	:	
Liveliness	

• Is	this	enough?
• What	about	transactions,	

traffic,	memory	usage	?

livenessProbe:
an http probe
httpGet:
path: /healthcheck
port: 8080

initialDelaySeconds: 15
timeoutSeconds: 1

readinessProbe:
an http probe
httpGet:
path: /readiness
port: 8080

initialDelaySeconds:
20

periodSeconds: 5

Schedulable: Resource requests, limits, &
quotas (F#XIV)

Cluster

Guarantee resources for your containers: Specify request and limits for the compute resources

CPU request: 150 CPU limit: 200

Guaranteed
CPU

Throttle limit
for K8

Max CPU resource for
container

CPU request: 0 CPU limit:0

Max CPU resource for
container

No request and limits are set. It defaults to 0
No guarantees, pods can be preempted any time

Once quota in a namespace for compute resources set, the users are forced to set requests or
limits for those values

Set resource quota

Namespace 1

Resource Quota :
CPU Limit:500mi

Memory Limit: 1024
MIB

Namespace 2

Resource Quota:
CPU Limit:500mi

Memory Limit: 1024
MIB

Upgradable (F#XV)

Applications	should	be	able	to	roll	out	updates	for	cases	where	backward	compatible	updates	(security	or	
feature	updates)needs	to	be	made	

minReadySeconds: 5
strategy:
indicate which

strategy
we want for rolling

update
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 1

Least Privilege (F#XVI)

Cluster

Limit	container	access	to	hosts.	Every	permission	is	an	attack	vector
• Use	Pod	Security	Policy	and	Network	Policy	to

• Limit	access	to	filesystem
• Limit	access	to	Kernel	capabilities	
• Use	a	non-privileged	user
• Limit	access	to	volume	types
• Limit	access	to	ports	

container

container

container

container

#sample-psp.yaml
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:

name: example
spec:

privileged: false
Don't allow
privileged pods!
The rest fills in some
required fields.
seLinux:
rule: RunAsAny

supplementalGroups:
rule: RunAsAny

runAsUser:
rule: RunAsAny

fsGroup:
rule: RunAsAny

volumes:
- '*'

Compromised

Auditable (F#XVII)

• Know WHAT/WHEN/WHO/WHERE for all CRUD operations
• Chronological set of records documenting sequence of events affecting

system and application by users or components

• Use cloud agnostic industry standard format – CADF (Cloud Auditing Data
Federation)

• Control the quantity of logs

CADF	event:

<initiator_id>:	ID	of	the	user	that	performed	the	operation
<target_uri>:	CADF	specific	target	URI,	(for	example:	data/security/project)
<action>:	The	action	being	performed,	typically:	<operation>.	<resource_type>

Access Control -Identity, Network, Scope
(F#XVIII)

Protect	app	and	resources	from	the	world
• Authentication and Authorization
• Certificate Management
• Data Protection
• Network security

• Network policy
• Network Isolation

• Admission Controller
• Example: Image admission controller

Access Control: Identity, Network, Scope
(F#XVIII)
Ensure	secure	communication	

• Generate	Certificates
• Enable	TLS	/	mTLS
• Manage	Certificates	

letsencrypt-stagingletsencrypt-prod icp-root-ca

signed
keypair

signed
keypair

Certificate	 Manager

signed
keypair

Issuer

Certificates	

Secrets

1.	Issuer	creates	 Certificate

2.	Certificate	 creates	 secret

IP: 9.37.239.158
Issuer: icp-root-ca

IP: 9.37.239.158
Issuer: icp-root-ca

Example.com
Issuer: letsencrypt-prod

sample issuer.yaml
apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: demo1-nginx-ca
namespace: demo

spec:
ca:

secretName: demo1-nginx-ca-key-pair

sample certificate.yaml
apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
Metadata:
name: demo1-nginx-cert

spec:
secretName: demo1-nginx-cert

issuerRef:
name: demo1-nginx-ca

kind: Issuer
commonName: "foo1.bar
dnsNames:

foo1.bar1

Pod

3.	Secret	 mounts	 to	Pod

Measurable (F#XIX)

Know the cost of the application
• Compute resources allocated to run the containers should be measurable
• Org / department using the cluster should be accountable

Cluster
container

container

container

container

container

container ---

Dept/org	1 Dept /orgn

Total usage

Cluster containercontainercontainercontainer containercontainer

IT cost

Dept /org	2

So,	What	really	
makes	a	production-
ready	app?	

19

A production grade application

Productio
n	thinking	
needs	to	
be	
through	
the	entire	
processAttention	to

Building	containers and	what's	inside	the	containers
Example:	Factor		I	:	codebase	,	Factor	X:	dev/prod	parity,	
Factor	XV

Attention	to
Kubernetesconfiguration	
Example:	Factor	III:	Config,	Factor	II	Config,	Factor	XIV:	
Schedulable

Attention	to
Cloud	provider	configurations
Example	XII:	Observable,	Example:	XVIII:	Access	Control.	
Factor	XIX::	Measurable	

Enough	
talking,	let’s	
see	it	LIVE!

21

• Self-service rich catalog of IBM MW
• Helm based parameterized install to simplify complex

K8 apps
• Logging : ELK + filebeat
• Monitoring : Prometheus + Grafana
• Usage : IBM Metering Service
• IBM Vulnerability Advisor
• IBM Mutation Advisor
• Authentication/ Authorization
• Certificate Management
• Network security
• Audit trail for any CRUD operations
• Team based organization of resources

Enterprise Content Catalog
Open Source and IBM Middleware, DevOps,

Data, Analytics, and AI Software

Core Operational Services
Logging, Monitoring, Metering, Security, Alerting

Kubernetes Container
Orchestration Platform

IBM Z

Choice of
infrastructure:

All	communication	enabled	over	TLS.	Data	
secured	in	transit	and	at	rest

Provides	the		capabilities	to	run	containerized	application	in	
secure,	scalable	and	resilient	environment			

IBM	Cloud	Private	(ICP)

23

Learn	
more	in	
our	new	
book!

#7678A: Tech Talk:
Deploying Kubernetes in
the Enterprise (with the
authors)

When:	Wednesday,	11:30	
AM	- 12:10	PM	

Where:	Table	Top	Tap	Room	
at	the	Metreon |	Code	Cafe	
Tech	Talks	Area

Get a signed copy with all
of the authors at the Code
Café Mezzaine on
Wednesday (7 – 7:30PM)!

ibm.biz/BdYA4i >Now available online compliments of IBM:

Need	Details	on	signing	

