
SIG Cloud Provider
Introduction:
Charter, current work, roadmap

Chris Hoge, OpenStack Foundation
Walter Fender Google
Steven Wong, VMware

2

 SIG Cloud Provider is focused on ensuring a consistent and high-quality user experience
across providers and acts as a central group for developing the Kubernetes project in a way
that ensures all providers share common privileges and responsibilities.

 New vendors providing support for Kubernetes should feel equally empowered to do so as
any of today's existing cloud providers.

 We will go over historical context, status, and direction of efforts currently underway including
the transition of individual provider SIGs to sub-projects and ongoing work in extracting
provider code from the main Kubernetes repository.

Hidden slide during presentation – included for those finding deck online later
Abstract

3

 Chris Hoge

 Portland, Oregon

 Co-chair, Kubernetes SIG Cloud
Provider, OpenStack SIG

 Senior Strategic Program
Manager, OpenStack Foundation

 PTL OpenStack Loci (lightweight
container images for OpenStack)

 GitHub: @hogepodge

 Steven Wong

 Los Angeles

 Co-chair, VMware SIG

 Open Source Community
Relations Engineer, VMware

 Active in Kubernetes storage and
Iot+Edge communities

 GitHub: @cantbewong

Presenters

 Walter Fender

 Graduated from U.C. Berkeley.

 Working at Google and on
Kubernetes API Machinery for two
years

 GitHub: @cheftako

Agenda

4

 Historical context of cloud provider

 Efforts currently underway

• Standardization efforts

• Testing requirements

Organization changes
•Transition of individual provider SIGs to sub-projects
•User groups

5

Ensures that the Kubernetes ecosystem is evolving in a way that is neutral to all public and
private cloud providers.

Responsible for establishing standards and requirements that must be met by all providers to
ensure optimal integration with Kubernetes.

Simplify, develop, and maintain cloud provider integrations as extensions, or add-ons, to
Kubernetes clusters

Important KEPs:

● Cloud Controller Manager https://git.io/fjBk2
● TestGrid conformance https://git.io/fjBkV
● Removing In-Tree Cloud Provider Code https://git.io/fjBkr

Mission
SIG Cloud Provider

https://git.io/fjBk2
https://git.io/fjBkV
https://git.io/fjBkr

6

 As of Kubernetes 1.14, there are several in-tree cloud providers. When you download
Kubernetes, you run these by default through direct configuration.

in tree cloud providers – included and built right into the fabric of Kubernetes
Kubernetes Cloud Providers – origin story

• AWS

• Azure

• Cloudstack

• GCE

• OpenStack

• OVirt

• Photon

• vSphere

Photo by JJ Ying on Unsplash

https://unsplash.com/@jjying?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/dna?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

7

● Kubernetes should be an orchestration kernel, with
drivers maintained independently by domain
experts.

● For any particular deployment, there is a large
body of code that is entirely irrelevant for that
particular deployment scenario.

● Inclusion can imply endorsement or support for a
select set of providers.

● Critical updates are tightly coupled to the
Kubernetes release cycle.

● Development work has stopped on some
providers, leaving code untested and
unmaintained.

Or, where is my cloud provider?
Why in-tree is a problem

Photo by Andrey Grinkevich on Unsplash

https://unsplash.com/@grin?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

8

Work is underway to make all cloud providers out of tree.
○ For supported in-tree providers, the provider code has been officially

deprecated and their dependencies are being moved to staging.
○ With in-tree provider moved to staging after the upcoming release, they

have a path to be removed in the following release. By the end of 2019, there
will be no in-tree provider code.

○ Meanwhile, SIG-Cloud-Provider is working on a migration path to transition
running clouds from in-tree to out-of-tree providers.

○ Unmaintained provider code will be removed completely.

How do we fix cloud providers for everyone?

To support independent work
• a Cloud Controller Manager interface

standard was developed
• allows for external (out of tree) providers

9

The Cloud Controller Manager (CCM) replaces the Kube Controller Manager (KCM), and is
daemon that embeds the following cloud-specific control loops:

● Node Controller
● Route Controller
● Service Controller

Introduction to the Cloud Controller Manager

Where did the (storage) volume controller go?

Storage plugins needs to go out of tree too – same reasoning as for
cloud providers

Because of complexity of volume management, the CCM developers
decided to not move volume control to the CCM

Instead, Kubernetes added support for external drivers implementing
the cross-orchestrator Container Storage Interface (CSI) (KEP)

https://github.com/kubernetes/enhancements/blob/master/keps/sig-storage/20190124-csi-topology.md

10

 Create a go package that
satisfies the cloud provider
interface.

 Create a copy of the Cloud
Controller Manager main.go
and import your package,
making sure there is an init
block available.

 Building, testing, packaging,
maintaining...

Your own Cloud Controller Manager
In three easy steps

 Go code Copy and Import these Publish

11

At a high level, to build an out-of-tree controller
manager, you need to implement the Cloud Provider
interface.

○ https://github.com/kubernetes/cloud-provider/blob/
master/cloud.go

Interfaces to implement (all are optional):
○ Load Balancer: cloud-specific ingress controller.
○ Instances: cloud-specific information about nodes in

your cluster.
○ Zones: cloud-specific information about the host

availability zones.
○ Clusters: cloud-specific information about running

clusters.
○ Routes: cloud-specific information about networking.

How do I implement a Cloud Provider?
I want to host Kubernetes on a new platform

Photo Micky Aldridge from Finland [CC BY 2.0
(https://creativecommons.org/licenses/by/2.0)]

https://github.com/kubernetes/cloud-provider/blob/master/cloud.go
https://github.com/kubernetes/cloud-provider/blob/master/cloud.go

12

Type Interface interface {

 // Initialize provides the cloud with a kubernetes client builder and may spawn goroutines

 // to perform housekeeping or run custom controllers specific to the cloud provider.

 // Any tasks started here should be cleaned up when the stop channel closes.

 Initialize(clientBuilder ControllerClientBuilder, stop <-chan struct{})

 // LoadBalancer returns a balancer interface. Also returns true if the interface is supported, false otherwise.

 LoadBalancer() (LoadBalancer, bool)

 // Instances returns an instances interface. Also returns true if the interface is supported, false otherwise.

 Instances() (Instances, bool)

 // Zones returns a zones interface. Also returns true if the interface is supported, false otherwise.

 Zones() (Zones, bool)

 // Clusters returns a clusters interface. Also returns true if the interface is supported, false otherwise.

 Clusters() (Clusters, bool)

 // Routes returns a routes interface along with whether the interface is supported.

 Routes() (Routes, bool)

 // ProviderName returns the cloud provider ID.

 ProviderName() string

 // HasClusterID returns true if a ClusterID is required and set

 HasClusterID() bool

}

13

The external cloud controller runs as a separate binary
that interacts with the Kubernetes API service.

It is configured with a standard set of options, which can
be extended to match the requirements of your cloud.

A starting template is provided in the Kubernetes CCM
directory.

https://github.com/kubernetes/kubernetes/blob/master/cmd/cloud-contr
oller-manager

 Photo by Markus Spiske on Unsplash

Cloud Controller Binary

https://github.com/kubernetes/kubernetes/blob/master/cmd/cloud-controller-manager
https://github.com/kubernetes/kubernetes/blob/master/cmd/cloud-controller-manager
https://unsplash.com/@markusspiske?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/binary?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

14

import (

 "fmt"

 "math/rand"

 "os"

 "time"

 "k8s.io/component-base/logs"

 "k8s.io/kubernetes/cmd/cloud-controller-manager/app"

 "<my_cloud_provider>"

 _ "k8s.io/kubernetes/pkg/util/prometheusclientgo" // load all the prometheus client-go plugins

 _ "k8s.io/kubernetes/pkg/version/prometheus" // for version metric registration

)

func main() {

 rand.Seed(time.Now().UnixNano())

 command := app.NewCloudControllerManagerCommand()

 // TODO: once we switch everything over to Cobra commands, we can go back to calling

 // utilflag.InitFlags() (by removing its pflag.Parse() call). For now, we have to set the

 // normalize func and add the go flag set by hand.

 // utilflag.InitFlags()

 logs.InitLogs()

 defer logs.FlushLogs()

 if err := command.Execute(); err != nil {

 fmt.Fprintf(os.Stderr, "error: %v\n", err)

 os.Exit(1)

 }

15

Your implementation needs at least:

● Unit tests with appropriate mocks to guarantee your implementation behaves as
expected functionally.

● End to end (e2e) testing with the provider enabled on an instance of your cloud for full
integration and conformance testing.

If you want to enable release gating against your cloud, both must be implemented and e2e
must be reporting to test-grid.

Two Types - Minimum
Testing

16

Arguments to kube-api-server:

● --cloud-provider=external

Arguments to start your CCM binary

● --cloud-provider=<your cloud provider name>
● --cloud-config=<path to your cloud configuration>

The similarity in options comes from the scaffolding code. This comes at the
cost of a lot of unneeded options also being pulled over to the provider.

(the application)
Running a Cloud Provider

17

When running in production, use a daemonset!

Your cluster behavior will change in a few ways. Notably:

● “kubelets specifying --cloud-provider=external will add a taint
node.cloudprovider.kubernetes.io/uninitialized with an effect NoSchedule
during initialization.”

● “Cloud information about nodes in the cluster will no longer be retrieved using local
metadata, but instead all API calls to retrieve node information will go through cloud
controller manager. ...for larger clusters you may want to consider if cloud controller
manager will hit rate limits since it is now responsible for almost all API calls to your
cloud from within the cluster.”

In production
Running a Cloud Provider

18

apiVersion: v1
kind: ServiceAccount
metadata:
 name: cloud-controller-manager
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: system:cloud-controller-manager
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: cloud-controller-manager
 namespace: kube-system

apiVersion: apps/v1
kind: DaemonSet
metadata:
 labels:
 k8s-app: cloud-controller-manager
 name: cloud-controller-manager
 namespace: kube-system
spec:
 selector:
 matchLabels:
 k8s-app: cloud-controller-manager
 template:
 metadata:
 labels:
 k8s-app: cloud-controller-manager

 spec:
 serviceAccountName: cloud-controller-manager
 containers:
 - name: cloud-controller-manager
 # for in-tree providers we use
k8s.gcr.io/cloud-controller-manager
 # this can be replaced with any other image for
out-of-tree providers
 image: k8s.gcr.io/cloud-controller-manager:v1.8.0
 command:
 - /usr/local/bin/cloud-controller-manager
 - --cloud-provider=<YOUR_CLOUD_PROVIDER>
 # Add your own cloud provider here!
 - --leader-elect=true
 - --use-service-account-credentials
 # these flags will vary for every cloud provider
 - --allocate-node-cidrs=true
 - --configure-cloud-routes=true
 - --cluster-cidr=172.17.0.0/16
 tolerations:
 # this is required so CCM can bootstrap itself
 - key: node.cloudprovider.kubernetes.io/uninitialized
 value: "true"
 effect: NoSchedule
 # this is to have the daemonset runnable on master nodes
 # the taint may vary depending on your cluster setup
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 # this is to restrict CCM to only run on master nodes
 # the node selector may vary depending on your cluster
setup
 nodeSelector:
 node-role.kubernetes.io/master: ""

19

What library will you use to interact with your cloud?

How do you want to handle authentication and authorization?

○ It’s likely that your cloud controller isn’t the only thing interacting with your cloud.
○ For example, you may have a Cluster API provider or storage provider in the works.
○ Consolidate your efforts, otherwise you’ll wind up with fragmented and inconsistent auth

configuration methods across your projects.

Implementation Details
Consider:

Thank You

Thank YouQ&A

22

Contacts
This deck: link tbd

Join the Cloud Provider SIG
● Slack channel: https://kubernetes.slack.com/messages/sig-cloud-provider
● List: https://groups.google.com/forum/#!forum/kubernetes-sig-cloud-provider
● Zoom meetings (join mailing list group for schedule)

Chris Hoge

@hogepodge

Jago Macleod

 @jagosan

Andrew Sy Kim

 @andrewsykim

SIG chairs

https://kubernetes.slack.com/messages/sig-cloud-provider
https://groups.google.com/forum/#!forum/kubernetes-sig-cloud-provider

