Istio Performance in Large Scale Cluster And Best Practices Chun Lin Yang (clyang@cn.ibm.com) Senior Software Arch, IBM IBM China Systems Lab Twitter: @clyang11 Guang Ya Liu (liugya@cn.ibm.com) STSM, IBM Multicloud Platform **IBM China Systems Lab** Twitter: @gyliu513 # Agenda - ☐ What Problem We Have - ☐ What We Have Done - ☐ Best Practices - ☐ More Tuning Guidance ### What Problem We Have The istio control panel is running in management and proxy nodes. ### What Problem We Have Test 10000+ pods with 4000 services, including 4000 pods and 1000 services in 100 namespaces are not managed by istio, while 6000 pods and 3000 services in 100 namespaces are managed by istio. Istio components information when the cluster has 4000 pods and 1000 services and they are not managed by Istio | NAME | CPU(cores) | MEMORY(bytes) | |---|------------|---------------| | istio-citadel-7d6ffd5d7f-kt2nq | 1m | 17Mi | | istio-galley-7d5687fcc5-krvpf | 57m | 35Mi | | istio-ingressgateway-78f6846c48-92hss | 205m | 498Mi | | istio-pilot-ddc499798-t7hrh | 172m | 1232Mi | | istio-policy-78588997b4-4wmk6 | 7m | 179Mi | | istio-sidecar-injector-58ff476d66-jrk5q | 16m | 8Mi | | istio-telemetry-7556866cc8-2l9fr | 7m | 180Mi | | prometheus-8469d98948-bpbcs | 863m | 3257Mi | | | · · | | Istio pilot component information after created 10000 pods and 4000 services | NAME | CPU(cores) | MEMORY(bytes) | Envoy Connections | |-----------------------------|------------|---------------|-------------------| | istio-pilot-ddc499798-6cswb | 389m | 43236Mi | 26 | | istio-pilot-ddc499798-9d4qz | 757m | / 1444Mi | / 1 \ | | istio-pilot-ddc499798-bbmxv | 223m | 45986Mi | 26 | | istio-pilot-ddc499798-qrqfw | 781m | 1464Mi | 3 | | istio-pilot-ddc499798-t7hrh | 1069m | 57027Mi | 33 | | | | | | We can see that the total envoy connections are less than 6000. Many envoys cannot connect to pilot That means the memory of pilot will be increased in index increase following the increasing of pod/service/virtualservice. In istio 1.1, there is a new feature namespace isolation Sidecar describes the configuration of the sidecar proxy that mediates inbound and outbound communication to the workload it is attached to. By default, Istio will program all sidecar proxies in the mesh with the necessary configuration required to reach every workload in the mesh, as well as accept traffic on all the ports associated with the workload. The Sidecar resource provides a way to fine tune the set of ports, protocols that the proxy will accept when forwarding traffic to and from the workload. In addition, it is possible to restrict the set of services that the proxy can reach when forwarding outbound traffic from the workload. Deploy the default global sidecar to enable the namespace isolation. In istio managed namespace, we also created the ingressgateway for each namespace, all the traffic for this namespace will use its ingressgateway to avoid the bottleneck of global ingressgateway. | IAME | CPU(cores) | MEMORY(bytes) | |--|------------|---------------| | .stio-citadel-7d6ffd5d7f-7nlvd | 54m | 50Mi | | .stio-galley-7d5687fcc5-z775d | 67m | 38Mi | | stio-ingressgateway-78f6846c48-9fpzm | 15m | 34Mi | | stio-pilot-c56988865-5t4sd | 3218m | 1691Mi | | stio-pilot-c56988865-9g9ng | 2203m | 1681Mi | | stio-pilot-c56988865-cfsgm | 3129m | 1458Mi | | stio-pilot-c56988865-pb4q9 | 3253m | 1693Mi | | stio-pilot-c56988865-q2dfp | 3300m | 1419Mi | | stio-policy-78588997b4-x962b | 45m | 348Mi | | stio-sidecar-injector-58ff476d66-gvrw8 | 21m | 19Mi | | stio-telemetry-5549d784c8-54q89 | 723m | 479Mi | | rometheus-748b7f5cf8-79lnf | 5110m | 66064Mi | #### The istio-proxy cpu and memory information | POD | NAME | CPU(cores) | MEMORY(bytes) | |---|-------------|------------|---------------| | istio-ingressgateway-7c5fc45c7f-mdml8 | istio-proxy | 3m | 22Mi | | olb-olb-java-deployment-1-557f8ff5b8-wxlqm | olb-java | 15m | 92Mi | | olb-olb-java-deployment-1-557f8ff5b8-wxlqm | istio-proxy | 5m | 23Mi | | olb-olb-java-deployment-10-6c457b5666-82hdn | olb-java | 15m | 90Mi | | olb-olb-java-deployment-10-6c457b5666-82hdn | istio-proxy | 5m | 23Mi | | olb-olb-java-deployment-11-59fcc7dfbd-lslwf | olb-java | 12m | 91Mi | | olb-olb-java-deployment-11-59fcc7dfbd-lslwf | istio-proxy | 7m | 23Mi | | olb-olb-java-deployment-12-945c7fdd6-wdxgn | olb-java | 14m | 92Mi | | olb-olb-java-deployment-12-945c7fdd6-wdxgn | istio-proxy | 5m | 24Mi | | olb-olb-java-deployment-13-7fcc5b596-8vxfw | olb-java | 25m | 91Mi | | olb-olb-java-deployment-13-7fcc5b596-8vxfw | istio-proxy | 6m | 23Mi | | olb-olb-java-deployment-14-5586d648db-2vf59 | olb-java | 14m | 90Mi | ## What We Have Done | Prometheus Alerts Graph Status - Help | | | | | |--|--|--|--|--| | O Enable query history | | | | | | pilot_xds | | | | | | Execute pilot_xds \$ Graph Console | Load time: 251ms
Resolution: 3s
Total time series: 5 | | | | | Element | Value | | | | | pilot_xds{instance="10.1.162.138:15014",job="pilot"} | 1066 | | | | | pilot_xds{instance="10.1.162.144:15014",job="pilot"} | 1091 | | | | | pilot_xds{instance="10.1.162.160:15014",job="pilot"} | 1178 | | | | | pilot_xds{instance="10.1.162.166:15014",job="pilot"} | 1083 | | | | | pilot_xds{instance="10.1.162.180:15014",job="pilot"} | 1165 | | | | Remove Graph Add Graph ## What We Have Done Base on the namespace isolation environment, using jmeter to distribute the requests. In this test case, I used ansible to run the jmeter in 10 hosts to simulate the real case. 1. Telemetry Information during testing NAME CPU(cores) MEMORY(bytes) istio-telemetry-5549d784c8-54q89 3515m 645Mi ### What We Have Done #### 2.Jmeter output ``` 2019/03/30 08:07:35 INFO - jmeter.reporters.Summariser: summary + 5450 in 6s = 904.3/s Avg: 187 M 2019/03/30 08:07:35 INFO - jmeter.reporters.Summariser: summary = 300024 in 300s = 999.0/s Avg: 196 M 2019/03/30 08:31:30 INFO - jmeter.reporters.Summariser: summary + 25544 in 30.1s = 1280.8/s Avg: 117 2019/03/30 08:31:30 INFO - jmeter.reporters.Summariser: summary = 243999 in 292s = 1335.1/s Avg: 117 ``` We can see that 990/1335=74% which is better than the result in offical result. That is probably caused of having the ingressgateway in each namespace. https://istio.io/docs/concepts/performance-and-scalability/ #### Latency for Istio 1.1.8 The default configuration of Istio 1.1 adds 8ms to the 90th percentile latency of the data plane over the baseline. We obtained these results using the Istio benchmarks for the http/1.1 protocol, with a 1 kB payload at 1000 requests per second using 16 client connections, 2 proxy workers and mutual TLS enabled. In upcoming Istio releases we are moving <u>istio-policy</u> and <u>istio-telemetry</u> functionality into the proxy as <u>MixerV2</u>. This will decrease the amount data flowing through the system, which will in turn reduce the CPU usage and latency. ### **Best Practices** - Use Namespace Isolation feature in a large scale cluster. - Install ingressgateway for each namespace - Separate the telemetry component to the exclusive node to avoid more CPU consumption impaction. - Recommended resource request for critical components to support 6000 pods and 3000 services - 6 pilot instances with 4vCPU and 4GB Memory - 1 or 2 telemetry instances with 4vCPU and 4GB Memory - Disable the policy component to increase the traffic throughput. - Prometheus occupied more CPU and Memory for large scale cluster, change the retention and scrapeInterval | # | Tuning Knob/Area | Value | Performance
Symptoms | Tuning Suggestion | |---|-------------------------------------|-----------------------|--|---| | 1 | keepaliveMaxServe
rConnectionAge | Default is
30 mins | Uneven Pilot replica load distribution | If there is no uniform distribution of load to pilot replicas, adjust this knob | | 2 | Concurrency | Default is 2 | Side Car Resource
Utilization and
Application
Latency | Adjust this parameter to control proxy side car worker threads to reduce resource utilization and also to reduce application latency and improve application throughput If set to 0 (default), then start worker thread for each CPU thread/core. | | 3 | Telemetry Filters | Default
collects all | Significant
resource usage by
Istio Control plane
mainly from
telemetry | There are 2 specific suggestions to reduce resources by removing rules and adopters 1) One can collect metrics by error condition 2) One can filter by various rules (stdio, Prom etc.) | |---|---|---|---|---| | 4 | Tracing | disable | Significant resource costs and latency/throughpu t impact | Disable tracing in production environments through configuration - Default profile of Istio does not have tracing | | 5 | HPA Thresholds for
Telemetry and
Gateways | 10m/30Mi
Default
1000m
(telemetry) | Impact on performance of the mesh | Need to adjust the thresholds for specific use cases (Istio proxy access logs are disabled by default) | ## THANK YOU!