Kubernetes
Policy WG
Session

KubeCon Shanghai 2019

Zhipeng Huang, Huawei

WG Overview

Mativation (from Brian ()

Kubernetes The Policy Framework
Policies impose permissions, quotas, constraints, requirements, defaults, etc.
on other resources

What patterns should we adopt going forward?

Built in vs extensions

Extension using DSLs vs APIs

Domain-specific (scheduling policy) vs resource-specific (pod restriction)
Conventions across policy types: whitelists, blacklists, profiles, defaults, etc.
Cluster-level vs namespace-level

Policies vs component flags

How do we provide policy defaults?

o O O O O O

Mativation (from ourselves)

e Policy are needed and designed all over the place in kubernetes

e Policy description are domain specific in nature:

o Not only in the sense Brian G meant (Kubernetes’ domain), but also in a larger context of
usage (audit, security, storage, network, Al...), vertical adoption (finance, telco, pharma,...),
languages, ...

o Usually out of scope for WG description

e Policy semantic and control mechanism is universal
o Policy semantic: the underlying description of the policy description
o Policy control mechanism: life cycle of policy itself, and life cycle of elements defined in policy

ativation (Policy is needed in many places outside k8s)

TN ONAP Portal (access to GUIs) ONAP Operations ONAP Policy Driven Decision &
< ; Manager (OOM) Enforcement Framework
Master Optimization Framework

Service Design & Creation (SDC)

°
POLICY Creation Framework Design& 23 Orchestrator
235
Policy. specific Update GUIs T s Loop
use case GUI - POLICY Creation / Administration W Policy Updates a Central DCAE
i REST APIs from Customers
Policy Template / Model andipartners Service Control Framework
Data Analytics / Corrective e - Orchestration
Collection Signature Action e -
S — -§ :% Q‘" Service Controller
Policy Classification Active & .'55 a [_? e
. Al
Cloud Network Service Security Audit | ... Available APIs
Inventory Network Control Framework
Advanced Policy Functions 3 . » Orchestration
H i 3 =
entification erivation Outbound y _-g S
A3 REST AP) T

Systems Cloud Control Framework

Orchestration
D
N\

[Dcae

Storage [~ i — =
Network & Services VNP
o 153

Prototype
Dev Tools

Distributed
Policies

REST APIs / Event Driven

Policy Compute

Infrastructure

11/28/2017 Figure 1: ONAP POLICY ARCHITECTURE

Overview (SIG Relationship)

sig-arch Policy WG
Multitenancy WG

__

Admission/Authorization/ W

Attestation |
[\
/ Schedullng
sig-auth

Storage sig-node

RM WG

Network L
sig-storage (

L Domain Specific Acc
S|g-network

WG Work [tems

Policy WG Work Items Overview

e Running list of interested items
o Multi-tenancy:
o Gatekeeper:

o PodSecurityPolicy Migration:

e New Area Exploration

o Policy as type system
o Policy formal verification

e (ase Studies

https://github.com/kubernetes-sigs/multi-tenancy
https://docs.google.com/document/d/1A1-Q-1OMw3QODs1wT6eqfLTagcGmgzAJAjJihiO3T48/edit#heading=h.rosd3aktkpys
https://docs.google.com/document/d/1A1-Q-1OMw3QODs1wT6eqfLTagcGmgzAJAjJihiO3T48/edit#heading=h.rosd3aktkpys
https://github.com/kubernetes/enhancements/issues/5

WG Running List 2019 - Multi-Tenancy Policy

]
Minimal Base version workflow: Advanced Full version workflow (WIP):
“tenant-A” CR
Kubectl create —f newtenant.yaml| Kubectl create —f newtenant.yaml
Kind: Kind:
tenant tenantrequest
Spec: Spec:
Tenant_name tenantTemplatelnstance
Admin_contact
1 <NamespaceTemplatelList>
NamespaceTemplate CR TenantTemplate CR

WG Running List 2019 - Multi-Tenancy Policy

e Self-service Namespace Creation

o “kubectl create ns” by tenant admins without going over an
indirect way through Tenant CRD and Tenant CRD controller.

e Cluster-scoped Resources

O the tenant admins may have permissions to create cluster scoped
resources like PodSecurityPolicy

e In a nutshell, help solving the CR population problem in
the context of multi-tenancy

WG Running List 2019 - Multi-Tenancy Policy

e Proposal: Policy Engine -> Policy Compiler -> Tenant
Policy object -> Resource Population (ns, podsec,
network, rbag,)

e Example : OPA -> Gatekeeper (Tenant Policy Object ->
Resource Population) -> General Kubernetes Cluster

e Problem: how to define the constraint for a population
(when do we hit a wall and stop)

unning List 2019 - OPA Gatekeeper Project

Constraints Constraint
Templates
AddConstraint() AddTemplate()
k8s Target GCP Target Azure Target k8s State GCP State Azure State
\ \
Generic
p-| ConstraintModel |«
API AddDat
AddTarget() ata()
(Or possibly passed to
constructor) A

Review() and Audit()

Enforcement Point:
k8s Admission Controller
Forseti
Git Precommit
Cl/CD

WG Running List 2019 - OPA Gatekeeper Project

OPA Gatekeeper v3.0

Policy
Template
CRD

Audit
results

&(ubemetes

Policy
Instance
CRD

apiserver

Pod Ingress

AuthZ
Webhook

Admission

Service Deploy Controller

Config CRD

Admission
Review

Que

Gatekeeper /

Validating admission.
Audit. CICD.

Policy templates (Rego)
and instances

Policies stored in CRDs
Audit results stored on
policy CRDs

Full architecture
Google, Microsoft,
Redhat, CBA, Styra
“Gatekeeper” donated
by Replicated

Built with kubebuilder

WG Running List 2019 - OPA Gatekeeper Project

v0.11: Native Integrations: WebAssembly progress

e WebAssembly (Wasm) is an instruction format for virtual machines
o Provides a safe/efficient/portable runtime for policy evaluation
o Goal: enable library embeddings of OPA policies in any language/runtime

e Vv0.10 added experimental Wasm stage to OPA e)

U—~ Parse Check/Rewrite/Index

Compile (Wasm)

e Vv0.11 expands the fragment of Rego supported by the Wasm stage

o All types of rules (ordered/unordered, default, partial sets/objects) now supported

e Example: open-policy-agent/contrib/wasm (CDN example)

openpolicyagent.org ‘

WG Running List 2019 - OPA Gatekeeper Project

PodSecurityPolicy Migration
e Explore the possibility of using Gatekeeper for PSP

// PodSecurityPolicySpec defines the policy enforced.
type PodSecurityPolicySpec struct {
// Privileged determines if a pod can request to be run as privileged.
Privileged bool “json:"privileged,omitempty""
// Capabilities is a list of capabilities that can be added.
Capabilities []api.Capability ‘json:"capabilities,omitempty"’
// Volumes allows and disallows the use of different types of volume plugins
Volumes VolumeSecurityPolicy "json:"volumes,omitempty"’
// HostNetwork determines if the policy allows the use of HostNetwork in the pod spec.
HostNetwork bool json:"hostNetwork,omitempty"®
// HostPorts determines which host port ranges are allowed to be exposed.
HostPorts [JHostPortRange "json:"hostPorts,omitempty"®
// HostPID determines if the policy allows the use of HostPID in the pod spec.
HostPID bool "json:"hostPID,omitempty""
// HostIPC determines if the policy allows the use of HostIPC in the pod spec.
HostIPC bool ‘json:"hostIPC,omitempty""
// SELinuxContext is the strategy that will dictate the allowable labels that may be set.
SELinuxContext SELinuxContextStrategyOptions *json:"seLinuxContext,omitempty""
// RunAsUser is the strategy that will dictate the allowable RunAsUser values that may be set.
RunAsUser RunAsUserStrategyOptions ‘json:'runAsUser,omitempty"®

// The users who have permissions to use this policy
Users [lstring “json:"users,omitempty"’

// The groups that have permission to use this policy
Groups [Istring ‘json:'groups,omitempty"”

WG New Area Exploration - policy formal verification

e Background Knowledge

©)

SMT can be thought of as a form of the constraint satisfaction
problem and thus a certain formalized approach to constraint
programming

an SMT instance is a formula in first-order logic, where some function
and predicate symbols have additional interpretations, and SMT is
the problem of determining whether such a formula is satisfiable

A predicate is a binary-valued function of non-binary variables.
Example predicates include linear inequalities (e.g. 38z+2y—z>4)or
equalities involving uninterpreted terms and function symbols (e.g:

f(f(u> ’U),’U) = f(uav)

WG New Area Exploration - policy formal verification

(sin(z)® = cos(log(y) - z) VbV —z% > 2.3y) A (-bV y < —34.4V exp(zx) >

where

beB,z,ye R

cvca

Z3Prover [23

the smt solver ©Code Issues 137

The Z3 Theorem Prover

+ CVC4 17 released (April 9, 2019

- CVCA 16 released (June ©10,819 commits

+ CVCA4 15 released (uly 10,

Pull requests 8 Projects 0 Wiki

b8 branches O 14 releases

The Rosette Language

DOWNLOAD DoOCs APPLICATIONS THANKS

About Rosette

+ 2015 competition results (Novembe
4, 2015 Branch: master v

+ CVC4 at Vienna Summer of Logic (July

28,2014

cmake
17 Third-pa cations

1.8 Publi

contrib

doc

examples

{2 NikolajBjorner Merge pull request #

New pullrequest

Change from BINARY.DIR to PROJECT_BINARY DIR
Fix bug i gprofdiff
Change from BINARY.DIR to PROJECT_BINARY DIR

Change from BINARY_DIR to PROJECT_BINARY_DIR

Owatch~ 171 kstar 4220 Yrork 720
Rosette is a solver-aided programming language that extends R >t with language

0

LD constructs for program synthesis, verification, and more. To verify or synthesize code,

Rosette compiles it to logical constraints solved with off-the-shelf SMT solvers. By
combining virtualized access to solvers with Racket's metaprogramming, Rosette

28121 contributors b View license makes it easy to develop synthesis and verification tools for new languages. You
simply write an interpreter for your language in Rosette, and you get the tools for free!

Createnewfile Uploadfiles Find File

#lang rosette

Latest commit 112¢13e 15 hours ago

(define (interpret formula)

(match formula
["(A ,expr ...) (apply && (map interpret expr))]
d [T(v ,expr ...) (apply || (map interpret expr))]
[(~ ,expr) (! (interpret expr))]

[lit (constant lit boolean?)]))

WG New Area Exploration - policy formal verification

Construct a policy symbolic graph for each kubernetes domain

> = =

networking Multi-tenancy Security

WG New Area Exploration - policy formal verification

e Starting with use case for “Privilege Escalation”,
requirements from operator LCM, multitenancy, Istio,...

e (ollaboration involving AWS, Styra, and many others in
the community

e Keep an eye on the slack channel or ping us via email
(zhipengh512@gmail, evb@redhat.com) if you are
also interested

WG New Area Exploration - policy as type system

Together, these concepts

1. ldentity

2. Outcome Set
3. State

4. Rules

enable us to define a policy in a way that is consistent and automatable.

WG New Area Exploration - policy as type system

Proposed long term vision:
1- Strong type system for Kubernetes resources

- Better specifications and validation with a formal type system
- Algebraic types:
- Allows you to define more complex resource types (e.g.
“vod"+"configmap”, union types)
- Compositional transformations and admission chains

WG New Area Exploration - policy as type system

Proposed long term vision:
2- Policy Hooks at key points

Lifecycle: Admission, deletion
Network traffic in and pod of pods
Pod start up and down

- API calls - webhook not quite enough

WG New Area Exploration - policy as type system

Proposed long term vision:
3- Capabilities

- Pod “leases”
- Delegation, access control

WG New Area Exploration - policy as type system

Proposed long term vision:
4- Kubernetes as the “now”

- Flattened view with explicit consistency bands

- Pipeline of transformations to facilitate managing
clusters

- Favor “compiled” over runtime interpretation

WG New Area Exploration - policy as type system

e Everything in namespaces
o Doesn't have to be the same “namespace”
m e.g "“organization” concept over users
m Needs to be - every resource is in one and only one
namespace (or zone or class or whatever)
e Immutable labels or annotations
o Keep context, allow chains of validations
e Improved ownership
o (Cross-namespace
o “Object pairs” or other way to easily tie lifecycles together

CNCF Wide Collaboration

Formal W (

CNCF Security 5IG - Cloud Native White Paper
[“enane” e }

1

[Compiler J Unified Policy Format
[Cloud Native Control Plane (Istio, Kubernetes, Mesos, Docker, ...) }
[Cloud Native Data Plane (Cilium, Notary, Envoy, SPIRE, ...) }

Semantic + Control = Architecture

Contact and Contribute

WG Facts

e Feel free to join the weekly meeting or leave a note on
the meeting minute doc () if you
have more interesting topics or projects could be used
for case studies !

e Find us at #wg-policy on slack, propose any new
interesting idea like we talked here for futuristic open
source study !

e Add label wg-policy for your KEPs if it is policy related !

https://goo.gl/auTfy2

Thank you !

06 A

