
Changpeng Liu, Xiaodong Liu

Cloud Storage Software Engineer
Intel Data Center Group

Notices & Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources
of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit http://www.intel.com/benchmarks .

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

© 2019 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as property of others.

http://www.intel.com/
http://www.intel.com/

Storage
Performance
Development
Kit

3

Storage Reference Software

• Optimized for latest generation CPUs and SSDs

• Provides Future Proofing

• Extends to Storage Virtualization and Networking

Scalable and Efficient Software Ingredients

• User space, lockless, polled-mode

• Up to millions of IOPS per core

• Minimize average and tail latencies

• Designed for non-volatile media

Available via spdk.io

@SPDKProject

Open Source community

• Open source building blocks (BSD licensed)

• Faster TTM, fewer resources required

Drivers

Storage
Services

Storage
Protocols

iSCSI
Target

NVMe-oF*
Target

SCSI

vhost-scsi
Target

NVMe

NVMe Devices

Blobstore

NVMe-oF*

Initiator

Intel® QuickData
Technology Driver

Block Device Abstraction (bdev)

Ceph
RBD

Linux
AIO

Logical
Volumes

3rd

Party

NVMe

NVMe*

PCIe
Driver

Vhost-FUSE

vhost-blk
Target

BlobFS

Integration

RocksDB

Ceph

Tools

fio

RAID0

PMDK
blk

virtio
(scsi/blk)

VPP TCP/IP

QEMU

Cinder

QoS

Vhost-
FUSE

Target

RDMA

Crypto

TCP

RDMA

TCP

SPDK Architecture

iSCSI malloc

spdk-cli

vhost-nvme
Target

virtio

virtio-
PCIe

vhost-
user

nvme-cli

4

Compre
ss

Block (OC)
FTL

OCF

OCF
Cache

Unified SPDK Vhost user target

5

• SPDK vhost target can provide virtio-blk/virtio-scsi/virtio-fs/NVMe in Guest.

• Build on common vhost-user library to parse vring and NVMe queues.

• Eliminate MMIO access for submission with polling mechanism.

Host

QEMU 1

Guest VM 1

QEMU 2 QEMU 3

Vhost-user-blk/scsi/vhost-fs/NVMe Target

QEMU 4

vhost-user-blk-pci

virtio-blk.ko

Guest VM 2

vhost-user-scsi-pci

virtio-scsi.ko

Guest VM 3

vhost-user-fs-pci

virtio-fs.ko

Guest VM 4

vhost-nvme-pci

nvme.ko

virtqueue

virtio_blk_req/rsp

virtqueue

virtio_scsi_req/rsp

virtqueue

FUSE req/rsp

NVMe SQ/CQ

NVMe req/rsp

6

Sharing Host Files with the Guest
• Plan 9 folder sharing over

Virtio - I/O virtualization
• QEMU can process the 9p

request and send to backend
via local existing POSIX APIs.

• Another optimization for
Clear Containers which
moves the IO process into
the Host kernel space,
eliminate syscall from
usersapce to kernel space
compared with previous
solution.

9p backend

QEMU

Guest VM

virtio-9p-pci/vhost-9p-pci

virtio-9p.ko

VFS

9p

9p

VFS

NVMe SSD

kernel

userspace

Application

Container deployments utilize explicit or implicit file sharing between host filesystem and containers.

7

What’s FUSE

• FUSE (Filesystem in Userspace) is an
interface for userspace programs to
export a filesystem to the Linux
kernel. The FUSE project consists of
two components: the fuse kernel
module and the libfuse userspace
library. libfuse provides the reference
implementation for communicating
with the FUSE kernel module.

• How can FUSE be used in
virtualization environment and
accelerate shared file access between
different VMs?

Host

VFS

FUSE Driver

kernel

userspace

Application

libfuse

FUSE Daemon

VFS

Example usage of FUSE

8

Introduction to Virtio-fs
• Virtio-fs is a shared file system that lets virtual machines access a

directory tree on the host. Unlike existing approaches, it is designed to
offer local file system semantics and performance. This is especially
useful for lightweight VMs and container workloads, where shared
volumes are a requirement.

• Virtio-fs was started at Red Hat and is being developed in the Linux,
QEMU, FUSE, and Kata Containers communities that are affected by code
changes.

• Virtio-fs uses FUSE as the foundation. A VIRTIO device carries FUSE
messages and provides extensions for advanced features not available in
traditional FUSE.

• DAX support via virtio-pci BAR from host huge memory.

9

SPDK Vhost-fs Target vs. QEMU Virtiofsd
• Eliminate userspace/kernel

space context switch by
providing a user space file
system.

• Zero copied for both READ
and WRITE.

• Hugetlbfs is required.
• DAX(Direct Access for files)

SPDK(Userspace)

QEMU

Guest VM

vhost-user-fs-pci

virtio-fs.ko virtqueue

FUSE

FS-DAX

BAR 2 Memory
Region

vhost-fs target

Blobfs

Blobstore

Bdev/NVMe

NVMe SSD

virtqueue

FUSE req/rsp

vhost library

kernel

userspace

Application

QEMU virtiofsd(passthrough)

virtiofsd

passthrough

EXT4/XFS

BLOCK/NVMe

NVMe SSD

libfuse

kernel

userspace

Introduction to SPDK Blobfs/Blobstore

• Application interacts with chunks of data called blobs:

• Designed for application that don’t consume block, such as Rocksdb.

• Designed for fast media, such as NVMe SSDs.

• Mutable array of pages of data, accessible via ID.

• Asynchronous, no blocking, queuing or waiting.

• Fully parallel, no locks in IO path.

• Data is direct, Metadata is cached, minimal support for xattrs.

• Logical volumes with snapshot and thin provisioning.

Blobstore Design - Layout

• A blob is an array of pages organized as an ordered list of clusters

Cluster 507 Cluster 48 Cluster 800 Cluster 78

LBA 0 LBA N

Pages 0-255 256-511 512-767 768-1023

Blobstore Design - Metadata

• Stored in pages in reserved region of disk

• Not shared between blobs

• One blob may have multiple metadata pages

Metadata Data

Blob
1

Blob
6

Blob
8

Blob
9

SPDK Blobfs API vs. FUSE

• Open, read, write,
close, delete,
rename, sync
interface to provide
POSIX similar APIs.

• Asynchronous APIs
are also provided.

FUSE Command Blobfs API

Lookup spdk_fs_iter_first,
spdk_fs_iter_next

Getattr spdk_fs_file_stat_async

Open spdk_fs_open_file_async

Release spdk_file_close_async

Create spdk_fs_create_file_async

Delete spdk_fs_delete_file_async

Read spdk_file_readv_async

Write spdk_file_writev_async

Rename spdk_fs_rename_file_async

Flush spdk_file_sync_async

Operation Mapping of Fuse in Virtqueue

• General FUSE command
has 2 parts: request and
response.

• General FUSE request is
consisted with IN header
and operation specific IN
parameters.

• General FUSE response is
consisted with OUT header
and operation specific OUT
results.

len

opcode

unique

nodeid

Fuse_in_header

……

len

error

unique

Fuse_out_header

<Param 1>

<Param 2>

<Param N>

Fuse_<OPS>_in

<Result 1>

<Result 2>

<Result M>

Fuse_<OPS>_out

Virtqueue ……

Filled by Guest; Read only to Host

Filled by Host; Write only to Host

Open and Close Operations in Fuse and SPDK

Lookup

Open

Release

Forget

>> file path

<< file nodeid

>> file nodeid

<< file handler

>> file nodeid

>> file nodeid

>> file handler

spdk_fs_iter loop

spdk_file_open_async

spdk_file_close_async

Resouce preparing

Resouce releasing

Read/Write Operations

Open(File_path)
in POSIX

Close(File_fd) in
POSIX

Implementation Details with Read/Write

……

Data

Fuse_in_header Fuse_read_in

Fuse_out_header data data data

Posix Read

Submit Fuse CMD

Virtqueue

spdk_file_readv

Fuse Read

Fetch Fuse CMD

VM

Virtio-fs

Vhost
Target

SPDK vhost-fs

Shared Memory

SPDK SW Stack

IN

OUT

FUSE Read spdk_file_open_asyc
Read(File_id, data) in

POSIX

Summary & Future plan

 Summary

• SPDK blobfs can support limited file APIs, and only append write is supported for now.

• Friendly for WRITE workload and simple READ cache feature is enabled.

• Optimized for big files, and not friendly for small files.

 Future plan

• Continue to improve existing SPDK blobfs, include the thread model as well as asynchronous
APIs.

• Benchmarks.

Useful links:
1. https://review.gerrithub.io/#/c/spdk/spdk/+/449162/

2. https://review.gerrithub.io/#/c/spdk/spdk/+/449163/

3. https://virtio-fs.gitlab.io/

https://review.gerrithub.io/#/c/spdk/spdk/+/449162/
https://review.gerrithub.io/#/c/spdk/spdk/+/449163/
https://virtio-fs.gitlab.io/

SPDK Community

https://SPDK.IO

Real Time Chat w/
Development Community

Backlog and
Ideas for Things to Do

Main Web Presence

Email Discussions

Weekly Calls
Multiple Annual Meetups

Code Reviews & Repo

Continuous
Integration

19

	 Introduce a SPDK vhost FUSE target to accelerate File Access in VMs and containers
	Slide 2
	Storage Performance Development Kit
	SPDK Architecture
	Unified SPDK Vhost user target
	Sharing Host Files with the Guest
	What’s FUSE
	Introduction to Virtio-fs
	SPDK Vhost-fs Target vs. QEMU Virtiofsd
	Introduction to SPDK Blobfs/Blobstore
	Blobstore Design - Layout
	Blobstore Design - Metadata
	SPDK Blobfs API vs. FUSE
	Operation Mapping of Fuse in Virtqueue
	Open and Close Operations in Fuse and SPDK
	Implementation Details with Read/Write
	Summary & Future plan
	SPDK Community
	Slide 19

