
Hyperparameter Tuning in 
Kubeflow
Richard Liu (Senior Software Engineer, Google)
ricliu@google.com | @richardsliu

Johnu George (Technical Lead, Cisco)
johnugeo@cisco.com | @johnugeorge

June 25, 2019
https://bit.ly/2IYRTQD



Agenda

● Hyperparameter Tuning - What it is and why it is hard
● Kubeflow and Katib
● System Architecture 
● Demo
● Neural Architecture Search
● Future Work



An Example: Digits Recognition with MNist

Source: https://github.com/apache/incubator-mxnet/blob/master/example/image-classification/train_mnist.py

https://github.com/apache/incubator-mxnet/blob/master/example/image-classification/train_mnist.py


What is Hyperparameter Tuning?

● Hyperparameters: Configuration variables that are external to the model, set before the training 

process begins

○ Ex: Batch size, learning rate

● Setting the right hyperparameters can significantly improve your model performance

● … but only if done correctly, which is hard

● Hyperparameter Tuning: Finding values for hyperparameters that optimizes an objective function

○ Ex: Finding the optimal batch size and learning rate to maximize prediction accuracy



Why is Hyperparameter Tuning Hard?

● More hyperparameters -> exponential search space growth
● Tuning by hand is inefficient and error-prone
● Need to tracking metrics across multiple jobs
● Managing resources and infrastructure for lots of jobs is hard
● Variety of frameworks and algorithms to support



How does Kubernetes Help?

● Microservice architecture -> simple to build self-contained, lightweight services
● Containerization -> increased resilience and scalability
● Declarative API -> straightforward to describe the desired state, makes managing resources simple
● Flexible API -> custom resource definition allows users to interact with objects using standard REST 

APIs and kubectl
● Portability -> go from local development to on-prem hosting to cloud



Introducing Kubeflow

● A Kubernetes-native ML platform for developing, orchestrating, deploying, and running scalable 
end-to-end ML workloads

● Make deployments of ML simple, portable, and scalable

Source: https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


Katib: Hyperparameter Tuning in Kubeflow

● Inspired by Google Vizier(*)

● Fully open-source: https://github.com/kubeflow/katib

● Framework agnostic

○ TensorFlow

○ PyTorch

○ MxNet

● Customizable algorithms

○ Random search

○ Grid search

○ Bayesian optimization

○ Hyperband

* https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46180.pdf

https://github.com/kubeflow/katib
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46180.pdf


Concepts: Experiment

● Experiment: an end-to-end process for HP optimization. E.g.:
○ Finding hyperparameter values for a digits recognition model

● An Experiment has…
○ Objective: What we are trying to optimize
○ Search Space: Constraints for configurations
○ Search Algorithm: How to find the optimal configurations

● Experiment is a Custom Resource
○ Allows standard k8s APIs
○ Can use kubectl to interact
○ State is stored in etcd
○ Lifecycle managed by controllers



Concepts: Suggestion

● Suggestion: a proposed solution to the optimization problem

○ E.g. one set of hyperparameter values

● Each suggestion algorithm is a standalone microservice

○ Allows users to create customized suggestion algorithms

● Experiment controller contacts Suggestion service to get new configurations for Trials



Concepts: Trial

● Trial: one iteration of the optimization process.
○ E.g. one instance of a training job, using one set of HPs

● A Trial has:
○ A set of specific parameter assignments
○ A “worker” process that runs the trial in a container
○ Observation metrics - how did we do?

● Trial is an internal Custom Resource
○ Experiment controller spawns/manages Trials
○ Each Trial runs in a Docker container
○ Can scale up for distributed training



Workflow for Hyperparameter Tuning

●



System Architecture



Demo



Classical vs Automated Machine Learning

● Classical machine learning: human experts…

○ Select features

○ Choose algorithm

○ Configure hyperparameters

○ Evaluate performance

○ Tune models

● Automated machine learning:

○ A program generates the model without human intervention



Landscape of Automated Machine Learning

Source: https://github.com/hibayesian/awesome-automl-papers

https://github.com/hibayesian/awesome-automl-papers


Neural Architecture Search

● Algorithm may search for an optimal network, or search for optimal cell (subgraph)

● Evolve strategy can be by generation or by modification



Workflow for Neural Architecture Search

●



What’s Coming?

● Better production support

○ Support for customizable database backend

○ Metadata store integration

○ Support for long-running experiments

● More features for automated machine learning

○ Model compression

○ Automated feature engineering



How to Contribute?

● GitHub: https://github.com/kubeflow/katib

○ Feedback and feature requests

○ “Help Wanted” features

○ New algorithms

○ Infrastructure and testing improvements
● Invitation to our Slack channel
● Mailing list: kubeflow-discuss

https://github.com/kubeflow/katib
https://join.slack.com/t/kubeflow/shared_invite/enQtNDg5MTM4NTQyNjczLWUyZGI1ZmExZWExYWY4YzlkOWI4NjljNjJhZjhjMjEwNGFjNmVkNjg2NTg4M2I0ZTM5NDExZWI5YTIyMzVmNzM
https://groups.google.com/forum/#!forum/kubeflow-discuss


Thank You

Yuji Oshima, NTT

Hougang Liu, IBM

Jinan Zhou, Cisco

Anubhav Garg, Cisco

Ce Gao, Caicloud

Guangya Liu, IBM

Andrey Velichkevich, Cisco

Kirill Prosvirov, Cisco



Demo: Setting Up an Experiment



Demo: Configuring Search Space



Demo: Viewing Experiment Results



Demo: Viewing Trial Metrics


