
1© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Getting Started with
Node.js

2© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Who is this nerd?

3© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Justin Reock
Chief Architect

Rogue Wave Software

Presenter
Justin has over 20 years’ experience
working in various software roles and
is an outspoken free software
evangelist, delivering enterprise
solutions and community education
on databases, integration work,
architecture, and technical
leadership.

He is currently the Chief Architect at
Rogue Wave Software.

4© 2019 Rogue Wave Software, Inc. All Rights Reserved.

What are we going to solve?

5© 2019 Rogue Wave Software, Inc. All Rights Reserved.

6© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Asynchronous processing

• No one likes the spinning wheel of doom hope!

• Node.js is inherently asynchronous, blocking actions only
when it absolutely needs to

• This is ideal for our new(ish) world of parallel compute,
distributed compute, microservices, etc…

• Built on industry standards and vetted against thousands
of production systems

7© 2019 Rogue Wave Software, Inc. All Rights Reserved.

What else?

8© 2019 Rogue Wave Software, Inc. All Rights Reserved.

A Long Time Ago…

Backend
Silo

Front End
Silo

Backend
Servers

Front End
Servers

App

9© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Behold, The Future!

DevOps Team

App Farm

App

Node allows us to code our front end and our backend using a single language

10© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Node.js Overview
• Created by Ryan Dahl in 2009 to address concurrency issues.
• Dahl famously “built it over the weekend…”
• Built on Chrome’s V8 JavaScript engine.
• Single-threaded asynchronous event driven JavaScript framework. In-progress

tasks can easily be checked for completion.
• Vertical scaling can be achieved by adding CPU cores and adding a worker to

each core. This means resources can be shared (via the cluster module and
child_process.fork(…)).

• Using JavaScript on the browser as well as the server minimizes the mismatch
between the environments. Example: Form validation code does not have to be
duplicated on both client and server.

• Node.js objects maintain a list of registered subscribers and notifies them when
their state changes (‘Observer’ design pattern).

https://developers.google.com/v8/
https://nodejs.org/api/cluster.html
https://nodejs.org/api/child_process.html

11© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Why reinvent the wheel?
• npm is the node (sic) package manager for Node.js.

– npm enables JavaScript developers to share code to
solve common problems promoting reuse. This
allows developers to take advantage of the expertise
of a large community.

– Very active and vibrant community: As of February
2017, there were nearly 400,000 total packages on
npm.

12© 2019 Rogue Wave Software, Inc. All Rights Reserved.

• NPM is the fastest
growing and most
prolific module
repository out there

• Over 800,000
modules and
growing

Source: www.modulecounts.com – April 2019

http://www.modulecounts.com/

13© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Benefits of Node.js
Pros

• Lightweight: Low memory footprint
• Cross-platform environment. Server and

client-side can be written in JavaScript.
• Fast: Asynchronous and event driven
• Popularity
• Concurrency implementation is abstract

(handled behind the scenes).
• Full Stack Web Development: Front-end

developers can code on the backend.
• Extensibility

Cons
• 1.7 GB memory limit (64-bit)

• Vertical scaling challenge (but workarounds
exist)

• Module versions can get confusing

• Open source governance is not flawless
(See LeftPad)

• Learning curve for developers not used to
dealing with an inherently asynchronous
language

14© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Node.js Web-Enabled Hello World

var http = require('http');
http.createServer(function (request, response) {

response.writeHead(200, {'Content-Type': 'text/html'});
response.end('Hello World');

}).listen(8081);

http://www.haneycodes.net/to-node-js-or-not-to-node-js/

http://www.haneycodes.net/to-node-js-or-not-to-node-js/

15© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Node Architecture

16© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Node’s Asynchronous Event Loop

17© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Installing Node
• This will vary by environment, but Node can be installed

in several different ways:

– Linux Package Manager (like yum, apt-get, pkg,
emerge)

– Standalone installer
(https://nodejs.org/en/download/)

– Official Docker Image

– Standalone Shell Script

https://nodejs.org/en/download/

18© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Verifying Node Install

• Once Node has been installed in your environment,
check to make sure NPM has been installed as well

• You can validate the installation by simply checking
the version of each binary from the command line:

19© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Demo: A Quick Node App

• Node applications can be run using the “node”
command line binary

• We’ll write a simple console hello world app from
scratch

• We’ll then execute it on the command line

20© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Picking an IDE
• I’ll cut to the chase, I really like

VSCode for Node.js development
• Terminal integration is essential

when building your Node apps
• And the built-in debugger works

flawlessly with Node.js
• However, you have other options
• In the end, go with what is familiar

and available (and is not Notepad)

21© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Picking an IDE

• We’ve all got our preferences, but make sure whatever
you choose meets at least the following requirements:

ü Application Debugger
ü Syntax Highlighting
ü ESLint
ü Terminal Integration
ü NPM Integration

ü IntelliSense (Code Completion)
ü Code Beautifier
ü Docker Integration
ü Node_modules Integration
ü Source Control Integration

22© 2019 Rogue Wave Software, Inc. All Rights Reserved.

• Cloud 9: https://c9.io/
– Online Code Editor
– Debugging
– Docker Integration: https://github.com/kdelfour/cloud9-docker
– Live Preview

• JetBrains WebStorm: https://www.jetbrains.com/webstorm/
– Code Completion
– Debugger

• Komodo IDE: http://www.activestate.com/komodo-ide

• Nodeclipse: http://www.nodeclipse.org/
– Eclipse with Node.js Plugins

Picking an IDE

https://c9.io/
https://github.com/kdelfour/cloud9-docker
https://www.jetbrains.com/webstorm/
http://www.activestate.com/komodo-ide
http://www.nodeclipse.org/

23© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Setting up VSCode
• Countless VSCode extensions

exist
• Start With at least:

– Node Debug
– Node.js Extension Pack

• Take time to explore what is out
there

24© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Understanding Launch.json in VSCode

• In VSCode, application launch configuration is controlled
through a JSON file called “launch.json”

• This file will be referenced before VSCode launches the
app when debugging

• It describes the environment the application will run in
including environment variables, bootstrap information,
etc

• It is essential for debugging, and convenient for
launching unit and functional tests

25© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Demo: Debugging an App in VSCode

• We’ll modify our HelloWorld example to store our
message in a variable

• Then we’ll create a launch configuration for our
project

• Finally, we’ll launch our project and inspect our
message variable

26© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Node App Basic Lifecycle

•If you are using SCM
•Don’t forget relevant
‘ignore’ files

Create and Clone
SCM Repo*

•Run "npm init" in
new project folder

Initialize Project
•Get to it!
•If using SCM, commit
as normal!

Code!

•In target production
environment, run
"npm install" to
download necessary
dependencies

Build

* Just create
new folder if
not using SCM

27© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Node App Basic Lifecycle

•If you are using SCM
•Don’t forget relevant
‘ignore’ files

Create and Clone
SCM Repo*

•Run "npm init" in new
project folder

Initialize Project
•Get to it!
•If using SCM, commit
as normal!

Code!

•In target production
environment, run
"npm install" to
download necessary
dependencies

Build

* Just create
new folder if
not using SCM

28© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Initializing a Node App

• It’s development best practice to use npm to initialize a new
Node.js app

• This process will prompt the user for several standard pieces
of metainformation about the application

• Things like the application name, version, license, and
bootstrap class will be collected

• NPM will generate a build configuration file for the app called
package.json

• Package.json will describe to NPM everything needed to build
your Node.js app

29© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Demo: Initializing a Node app

• Let’s turn our HelloWorld demo into a proper Node
application

• We’ll run npm init in the root folder and answer the
prompts

• Then we’ll look at what NPM has done for us

30© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Understanding package.json
• After running “npm

init”, this file will
be generated in
the project root
folder

• Our project
currently has no
dependencies, but
dependency
information is
held here too

{
"name": "helloworld",
"version": "1.0.0",
"description": "Hello World!",
"main": "hello.js",
"scripts": {
"test": "echo \"Error: no test

specified\" && exit 1"
},
"author": "Justin Reock",
"license": "GPL-3.0-or-later"

}

31© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Working with dependencies
• Our final topic will introduce dependencies, or modules
• Most modern open-source languages have a set of open-source

modules that can be added to a project
• You can also create your own modules, whether private or freely

available
• Recall that the NPM repository provides these modules
• NPM can also be used to add dependencies to a project, in both

development and production environments, using the “npm install”
command

• Once NPM has installed a module into a project, a developer can
begin using it with the “require” directive inside the Node.js app

32© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Example: Let’s Add Some Color
• The “colors” module for Node adds easy support for generating

console colors through escape commands
• You want your console output to be readable, and even fun!
• The colors module makes that easy, and we can add it with npm

install
• Note that the –-save directive will ensure that the module is saved

to package.json

npm install –-save colors
var colors = require(‘colors’);
console.log(colors.red.underline(‘This is red underlined text.’);
or
console.log(‘This is red underlined text.’.underline.red)

33© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Demo: Adding Project Modules from NPM

• So, let’s add some color to our HelloWorld app!

• We’ll use npm to install the “colors” module and
make sure it’s contained in package.json

• Then we’ll ”require” that module, and use it in our
code

• BONUS: Remove the node_modules and rebuild with
npm install

34© 2019 Rogue Wave Software, Inc. All Rights Reserved.

What did we learn?
• Node.js is a language that focuses on concurrency and unified

development
• Dependencies (modules) and builds are assisted through npm
• Node is asynchronous by default
• Many IDEs exist for Node.js, and we have focused on VSCode
• Node projects should be initialized using ”npm init”
• Modules can be installed with “npm install –save [module]”
• Projects are built from package.json in other environments with “npm

install”
• Modules are included as variables in a project using the “require”

directive

35© 2019 Rogue Wave Software, Inc. All Rights Reserved.

What Next?

• Node is a huge subject, but, I’d focus on the following
from here:
– Understand Asynchronous Coding
– Get to Know Events and Streams
– Learn about Functional Programming
– Master your IDE’s Debugger
– Start Exploring Other Modules!

Still So Much to Learn!!

36© 2019 Rogue Wave Software, Inc. All Rights Reserved.

I Like People!!

LinkedIn – Only Justin Reock in the world apparently!

Twitter – @jreock - But I do get a little political on
there….

Blog - http://blog.klocwork.com/author/justin-reock/

Email – justin.reock@roguewave.com

Feel Free to Reach Out – I Get Lonely…

http://blog.klocwork.com/author/justin-reock/

37© 2019 Rogue Wave Software, Inc. All Rights Reserved.

Questions?

38© 2019 Rogue Wave Software, Inc. All Rights Reserved.

