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Flow-based Solution
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Flow Configuration

• Configures static flows with 5-tuple and VRF-aware.

• Supports both ipv4 and ipv6 flows.

• First try HW offload to NIC based on DPDK rte_flow mechanism.

• If failed, then will create SW flow mappings.

• Each flow creates two HW or SW flow mappings, i.e. bi-directional traffic.

• Both flow mappings will be mapped to the same flow.



HW Flow Offload

• Leverages rte_flow mechanism from DPDK:
• Supports ipv4-n-tuple, ipv6-n-tuple, ipv4-vxlan, ipv6-vxlan, etc.

• Supports rte_flow_item, rte_flow_action, etc.

• Using rte_flow_create to create a flow.

• If failed, then create a SW flow session.

• HW flow matching:
• If one packet matches a flow, then flow ID is marked by HW.

• DPDK drivers sets flow ID to metadata of packet descriptor.

• Subsequent features could retrieve flow ID from packet descriptor.



SW Flow Process

• Leverages RSS mechanism:

• Supports ipv4-n-tuple, ipv6-n-tuple, etc.

• Calculate hash value and look up SW flow table.

• If matched, set flow ID to metadata of packet descriptor.

• Subsequent features could retrieve flow ID from packet descriptor.



NICs & Flows

One flow is mapping to many NICs.

• Same flow from all NICs are sent 
to same core to handle.
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One NIC contains many flows.

• Different flows from one NICs are sent 
to different core to handle.



BD/VRF Aware

If having same 5-tuple packet matching on 2 different VLANs or even 
on 2 different interfaces, they should be treated as different flows.
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DPI Flow Process

• When HW flow offload matched, packets will be redirected to DPI plugin with 
dpi flow id in packet descriptor.

• If not, packets will be bypassed to DPI plugin from ip-input, and then lookup 
SW flow mapping table.



TCP Connection Track

• Tracks TCP three-way handshakes.

• Identify TCP traffic direction.

• Tracks TCP send sequence and ack sequence.



AppID Database

typedef struct dpi_app_match_rule_
{

char *host;
char *pattern;
char *app_name;
u32 app_id;

} dpi_app_match_rule;

dpi_app_match_rule app_match_rules[] = {

{"www.cisco.com", NULL, "Cisco", DPI_APP_CISCO}
,
…
,
{"www.intel.com", NULL, "Intel", DPI_APP_INTEL}
,
…
}

typedef enum
{

DPI_APP_CISCO = 1,
…
DPI_APP_INTEL = 7,
…

} dpi_application_id_t;



How Hyperscan Works
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Block Mode and TCP Segments Reassembly 

• Block mode can scan rules only in a complete payload.

• If defining a rule "abcde", then for Block Mode, "abcde“ should be in a complete 
PDU payload.

• Requirements for TCP Segments process:
• Reassembly TCP segments first to a complete PDU payload.
• Scan PDU payload through Block mode.
• Fragment TCP segments again.

• This degrades the performance.

• Most DPI open source projects leveraging Hyperscan performs in above way.



Stream Mode and TCP Segments Reassembly 

• Stream mode can scan rules straddling into different TCP segments.

• If defining a rule "abcde", then for Stream Mode, then "abc" can be reside in 
packet 1, and "de" can be in packet 2.

• Requirements for TCP Segments process:
• Reassemble TCP segments reassembly on the fly.

• Can handle out-of-order tcp segments.

• Can handle overlapping segments.

• This helps to improve the performance.

• VPP DPI plugin is implemented in this way.



Identifying Layer 7 Applications

• Identify SSL/TLS certificate message and subsequent segments.

• Scan SSL/TLS certificate message through hyperscan, and get application ID if hit.

• If maximum packets for this flow are scanned and not matched, the detection 
will end up.
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Test Stream
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Test Result



• Provides a flow-based framework for advanced packet processing.

• Supports HW flow offloading and SW flow process.

• Supports Hyperscan Stream Mode.

• Supports TCP segments reassembly on the fly.
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Key Takeaway



Thank you !

Q & A

Email : hongjun.ni@intel.com

qi.z.zhang@intel.com
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