
Flow-based Packet Process Framework on DPDK and VPP

Hongjun Ni, Qi Zhang @ Intel

Acknowledgement

VPP Community

John DiGiglio @ Intel

Ray Kinsella @ Intel

Jokul Li @ Intel

Xiang Wang @ Intel

*Other names and brands may be claimed as the property of others.

Jerome Tollet @ Cisco

Dave Barach @ Cisco

Damjan Marion @ Cisco

Andreas Schultz @ Travelping

Mathias Gumz @ Travelping

Agenda

• Flow-based Solution

• HW Offload and SW Flow Process

• TCP Segments Reassembly

• Hyperscan Block and Stream Mode

• Identifying Layer 7 Applications

• Key Takeaway

*Other names and brands may be claimed as the property of others.

Flow-based Solution

Data Plane

Configure flow

NIC1
Flow id

HW flow

Flow Director Flow table

NIC2

RSS

Tunnel (VxLAN, GTPU, etc.)

Host Stack, QUIC

Deep Packet Inspection

Network Intelligence

NIC3

NIC4
SW Flow

Flow table

Flow id

App id

Qos

Rate
Limiting

Routing

SDWAN

Flow Configuration

• Configures static flows with 5-tuple and VRF-aware.

• Supports both ipv4 and ipv6 flows.

• First try HW offload to NIC based on DPDK rte_flow mechanism.

• If failed, then will create SW flow mappings.

• Each flow creates two HW or SW flow mappings, i.e. bi-directional traffic.

• Both flow mappings will be mapped to the same flow.

HW Flow Offload

• Leverages rte_flow mechanism from DPDK:
• Supports ipv4-n-tuple, ipv6-n-tuple, ipv4-vxlan, ipv6-vxlan, etc.

• Supports rte_flow_item, rte_flow_action, etc.

• Using rte_flow_create to create a flow.

• If failed, then create a SW flow session.

• HW flow matching:
• If one packet matches a flow, then flow ID is marked by HW.

• DPDK drivers sets flow ID to metadata of packet descriptor.

• Subsequent features could retrieve flow ID from packet descriptor.

SW Flow Process

• Leverages RSS mechanism:

• Supports ipv4-n-tuple, ipv6-n-tuple, etc.

• Calculate hash value and look up SW flow table.

• If matched, set flow ID to metadata of packet descriptor.

• Subsequent features could retrieve flow ID from packet descriptor.

NICs & Flows

One flow is mapping to many NICs.

• Same flow from all NICs are sent
to same core to handle.

Configure flow

NIC1
Flow id m

HW flow

Flow Director Flow m

NIC2

Flow Director

Configure flow

NIC1
Flow id x

HW flow 1

Flow Director Flow x

Flow id y
HW flow n

Flow y

One NIC contains many flows.

• Different flows from one NICs are sent
to different core to handle.

BD/VRF Aware

If having same 5-tuple packet matching on 2 different VLANs or even
on 2 different interfaces, they should be treated as different flows.

Configure flow

NIC1 (VRF x)

Flow id m

HW flow

Flow Director
Flow m

NIC2 (VRF y)

Flow Director

Flow n
Flow id n

Configure flow

NIC1
Flow id c

HW flowFDIR (VLAN a)

Flow c

FDIR (VLAN b) Flow d
Flow id d

DPI Flow Process

• When HW flow offload matched, packets will be redirected to DPI plugin with
dpi flow id in packet descriptor.

• If not, packets will be bypassed to DPI plugin from ip-input, and then lookup
SW flow mapping table.

TCP Connection Track

• Tracks TCP three-way handshakes.

• Identify TCP traffic direction.

• Tracks TCP send sequence and ack sequence.

AppID Database

typedef struct dpi_app_match_rule_
{

char *host;
char *pattern;
char *app_name;
u32 app_id;

} dpi_app_match_rule;

dpi_app_match_rule app_match_rules[] = {

{"www.cisco.com", NULL, "Cisco", DPI_APP_CISCO}
,
…
,
{"www.intel.com", NULL, "Intel", DPI_APP_INTEL}
,
…
}

typedef enum
{

DPI_APP_CISCO = 1,
…
DPI_APP_INTEL = 7,
…

} dpi_application_id_t;

How Hyperscan Works

Match callback
Match for ID n

at Offset i

Rulesets
User Defined

Phase 1: Compilation
at system initialization phase

/foo.*bar/s

/[a-f]{6,12}/i

/^GET\s.*HTTP/m

Hyperscan Compiler
hs_compile_multi

Bytecode
(database)

Mode (Block, Stream)
Predefined Flags Allocate Scratch

hs_alloc_scratch

Hyperscan Runtime
Scan (Block mode)

hs_scan

Scratch space
hs_scratch_t

Data Blocks

Match callback
Match for ID n

at Offset i

Phase 2: Data Searching & Match

Match callback
Match for ID n

at Offset i

…

#1

#2

#3

Runtime Init (Once)

Data Blocks
Data Blocks

Block Mode and TCP Segments Reassembly

• Block mode can scan rules only in a complete payload.

• If defining a rule "abcde", then for Block Mode, "abcde“ should be in a complete
PDU payload.

• Requirements for TCP Segments process:
• Reassembly TCP segments first to a complete PDU payload.
• Scan PDU payload through Block mode.
• Fragment TCP segments again.

• This degrades the performance.

• Most DPI open source projects leveraging Hyperscan performs in above way.

Stream Mode and TCP Segments Reassembly

• Stream mode can scan rules straddling into different TCP segments.

• If defining a rule "abcde", then for Stream Mode, then "abc" can be reside in
packet 1, and "de" can be in packet 2.

• Requirements for TCP Segments process:
• Reassemble TCP segments reassembly on the fly.

• Can handle out-of-order tcp segments.

• Can handle overlapping segments.

• This helps to improve the performance.

• VPP DPI plugin is implemented in this way.

Identifying Layer 7 Applications

• Identify SSL/TLS certificate message and subsequent segments.

• Scan SSL/TLS certificate message through hyperscan, and get application ID if hit.

• If maximum packets for this flow are scanned and not matched, the detection
will end up.

17

Test Stream

18

Test Result

• Provides a flow-based framework for advanced packet processing.

• Supports HW flow offloading and SW flow process.

• Supports Hyperscan Stream Mode.

• Supports TCP segments reassembly on the fly.

19

Key Takeaway

Thank you !

Q & A

Email : hongjun.ni@intel.com

qi.z.zhang@intel.com

20

mailto:hongjun.ni@intel.com
mailto:qi.z.zhang@intel.com

