
Jaeger
Deep Dive

Steve Flanders (Omnition)

CloudNativeCon China, Shanghai, 2019

1

● About the Project
● New Features
● Demo
● Roadmap
● Q & A

Agenda

2

About

3

Steve Flanders

Head of Product and Experience at Omnition

@smflanders | https://sflanders.net

What is Tracing & Why?
Concepts and terminology

4

Modern Distributed Systems are COMPLEX

5

Loading Netflix or Facebook home page ⇒

dozens of microservices, 100s of nodes

6

 BILLIONS of times a day!

How can we tell what is going on?

7

Which service is to blame

when things go wrong or become slow?

Traditional monitoring tools don’t help

8

Metrics show something is
wrong, but do not explain why.

Logs are a mess: concurrent
requests, multiple hosts,
impossible to correlate.

Monitoring tools must tell stories!

9

Do you like debugging
without a stack trace?

We need to monitor
distributed transactions
⇒ distributed tracing!

• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Joined CNCF in Sep 2017 (incubating)

• Applying for graduation

https://github.com/cncf/toc/pull/171

Jaeger - /ˈyāɡər/, noun: hunter

10

https://github.com/cncf/toc/pull/171

Project & Community

11

● 7 maintainers, from Uber and Red Hat

● GitHub stats

○ >8,200 stars, >810 forks

○ >580 contributors

■ >220 authors of commits and pull requests

■ >350 issue creators

Jaeger, a Distributed Tracing Platform

12

trace collection
backend

https://jaegertracing.io

visualization
frontend

instrumentation
libraries

data mining
platform

https://jaegertracing.io

Jaeger Architecture (v1)

1313

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger-collector

Control flow poll
(sampling, etc.)

DBadaptive
sampling

jaeger-query

UI

Spark jobs

push

Jaeger Architecture (v2)

14

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger
collector

Control flow poll
(sampling, etc.)

DB

adaptive
sampling

jaeger
query

UI

Flink
streaming

Kafka

push

jaeger
ingester

& indexerasync

jaeger
collector

Jaeger Architecture (v2)

15

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

opencensus-
collector

DB

jaeger
query

UI

Flink
streaming

Kafka

push

jaeger
ingester

& indexerasync
zipkin-client

opencensus-agent

Jaeger Architecture (v2)

16

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

opencensus-
collector

DB

jaeger
query

UI

push

zipkin-client

opencensus-agent

Jaeger Architecture (v2)

17

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger
collector

Control flow poll
(sampling, etc.)

DB

adaptive
sampling

jaeger
query

UI

Flink
streaming

Kafka

push

jaeger
ingester

& indexerasync

Jaeger <3 Open Standards

18

OpenCensus

+ =

https://medium.com/jaegertracing/jaeger-and-opentelemetry-1846f701d9f2

https://medium.com/jaegertracing/jaeger-and-opentelemetry-1846f701d9f2

Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● React/Javascript frontend
● OpenTracing Instrumentation libraries
● Integration with Kafka, Apache Flink

19

Apache Cassandra® is a trademark of the Apache Software Foundation in the United States and/or other countries.

http://www.apache.org/

Integrations

20

Integrations

● Jaeger Operator for Kubernetes
○ https://github.com/jaegertracing/jaeger-operator

● OpenCensus libraries and agent ship with receivers/exporters for Jaeger
○ https://opencensus.io/guides/exporters/supported-exporters/java/jaeger/

● Istio comes with Jaeger included
○ https://istio.io/docs/tasks/telemetry/distributed-tracing/

● Envoy works with Jaeger native C++ client
○ https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing

● Eclipse Trace Compass incubator supports importing Jaeger traces
○ https://github.com/tuxology/tracevizlab/tree/master/labs/303-jaeger-opentracing-traces

21

https://github.com/jaegertracing/jaeger-operator
https://opencensus.io/guides/exporters/supported-exporters/java/jaeger/
https://istio.io/docs/tasks/telemetry/distributed-tracing/
https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing
https://github.com/tuxology/tracevizlab/tree/master/labs/303-jaeger-opentracing-traces

Jaeger 1.10 - 1.12
New Features

22

New Features

● Elasticsearch improvements (security, FindTraceIDs, archiving)

● Better gRPC support (security, retry, load balancing, external resolvers)

● Better Zipkin compatibility

● UI improvements (trace detail, find, query capabilities)

https://github.com/jaegertracing/jaeger/releases

https://github.com/jaegertracing/jaeger/blob/master/CHANGELOG.md

https://github.com/jaegertracing/jaeger-ui/blob/master/CHANGELOG.md

23

https://github.com/jaegertracing/jaeger/releases
https://github.com/jaegertracing/jaeger/blob/master/CHANGELOG.md
https://github.com/jaegertracing/jaeger-ui/blob/master/CHANGELOG.md

Website (easy to contribute)

24

Demo!

25

Demo Setup

$ > docker run -d --name jaeger -p 5775:5775/udp -p 5778:5778

-p 6831-6832:6831-6832/udp -p 16686:16686 -p 14268:14268 -p 9411:9411

-e COLLECTOR_ZIPKIN_HTTP_PORT=9411 jaegertracing/all-in-one:1.12

http://localhost:16686/search

$ > docker run --rm -it --link jaeger -p 8080-8083:8080-8083

-e JAEGER_AGENT_HOST="jaeger" jaegertracing/example-hotrod:1.12 all

http://localhost:8080/

26

http://localhost:16686/search
http://localhost:8080/

Graph Visualizations
Trade Diffs and Trace Graph

27

Graph Visualizations

28

Gantt chart is not great for traces with 10s of thousands of spans

● Trace Diffs

○ Compare two traces

○ Compare one trace against a group of traces (coming soon)

● Trace Graph (coming soon)

○ Call graph visualization with mini-aggregations

○ Showing paths rather than individual RPCs

Comparing trace structures – Unified diff

Comparing trace structures – Shared structure

Comparing trace structures – Absent in one of the traces

Comparing trace structures – More or less within a node

Comparing trace structures – Substantial divergence

Roadmap

34

Structural vs. Time

Structural vs. Time – Very similar structures

Structural vs. Time – 2.74 seconds

Structural vs. Time – 50% increase in duration

Structural vs. Time – Are these new spans to blame?

Structural vs. Time – Or is the lag increased throughout?

Comparing span durations – Roadmap Item

Comparing span durations – Similar durations

Comparing span durations – Nodes that aren't shared

Comparing span durations – Follow the slower nodes

Comparing span durations – Coming soon...

Comparing span durations – Coming soon...

Learn More
Website: jaegertracing.io/
Blog: medium.com/jaegertracing

47

https://jaegertracing.io/
https://medium.com/jaegertracing

Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings

48

https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

Q & A
Open Discussion

49

Common Questions

● More resources: Mastering Distributed Tracing Book by Yuri

 https://www.shkuro.com/books/2019-mastering-distributed-tracing/

● Overhead of tracing

 https://medium.com/@soria.gaby/what-is-the-cost-of-doing-instrumentation-aae5844d673f

● Sampling: Tail sampling in OpenCensus, Adaptive sampling in Jaeger

● Message bus / Async / Long traces

○ Varies — OpenTracing supports via follows from

○ Visualization can be hard - Jaeger UI is primarily for RPC view

50

https://www.shkuro.com/books/2019-mastering-distributed-tracing/
https://medium.com/@soria.gaby/what-is-the-cost-of-doing-instrumentation-aae5844d673f

Appendix
Additional Topics and Slides

51

Architecture Changes

52

Asynchronous Ingestion

53

Architecture 2017: Push

54

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger-collector

Control flow poll
(sampling, etc.)

DBadaptive
sampling

jaeger-query

UI

Spark jobs

push

Asynchronous span ingestion

55

● Push model was struggling to keep up with traffic spikes

○ Because of sync storage writes

○ Collectors had to drop data randomly

● Kafka is much more elastic for writes

○ Just raw bytes, no schema, no indexing

○ A lot less overhead on the write path

● Data in Kafka allows for streaming data mining & aggregations

● Two new components: jaeger-ingester and jaeger-indexer

Architecture now: Push+Async+Streaming

56

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger
collector

Control flow poll
(sampling, etc.)

DB

adaptive
sampling

jaeger
query

UI

Flink
streaming

Kafka

push

jaeger
ingester

& indexerasync

Protobuf & gRPC
Enabling roadmap

57

Protobuf & gRPC

58

● Internal data model generated from Protobuf IDL

● gRPC connection between jaeger-agent and jaeger-collector

Why

● gRPC plays better with modern routing than TChannel

● Path to official data model and collector/query APIs

● Protobuf-based JSON API

● Unblock development of storage plugins

● (Thrift still supported for backwards compatibility)

Zipkin Compatibility

59

Zipkin Compatibility

● Clients

○ Zipkin B3-*** headers for context propagation

○ Interop between Jaeger-instrumented and Zipkin-instrumented apps

● Collector

○ Zipkin Thrift and JSON v2 span format

○ Use Zipkin instrumentation (e.g. Brave) to send traces to Jaeger

● Outstanding

○ Accept Zipkin spans from Kafka stream

60

Roadmap
http://bit.do/jaeger-roadmap

61

http://bit.do/jaeger-roadmap

Adaptive Sampling

Problem

● APIs have endpoints with different QPS

● Service owners do not know the full impact of sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic

62

● Jaeger clients support per service/endpoint

sampling strategies

● Can be statically configured in collector

● Pull requests for dynamic recalculations

Adaptive Sampling Status

63

● Based on Kafka and Apache Flink

● Support aggregations and data mining

● Examples:
○ Pairwise dependencies diagram

○ Path-based dependencies diagram

○ Latency histograms

Data Pipeline

64

● Based on gRPC/Protobuf work
● PRs in progress for proof of concept
● Community support for different storage

backends

Storage plugins

65

● Add ability to store/retrieve partial spans

● Use case:
○ Certain workflows are hours long. Unfortunately

spans are only emitted once after it’s Finished().

“Root span” is missing until the complete workflow

is finished.

Partial Spans (community driven)

66

