
LEADING
COLLABORATION

IN THE ARM
ECOSYSTEM

Debugging with eBPF on Arm Platforms

Leo Yan (and Daniel Thompson)

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Introduction
eBPF stands for ‘Extended Berkeley Packet
Filter’. Classic BPF (cBPF) was used for
network packet filtering but now it can be
used for much, much more.

We will review what’s the challenges for
deployment eBPF on Arm platforms and talk
about eBPF tooling. We will conclude the
session by discussing two examples.

We will finish this material in 35 minutes.

Framework of eBPF

ply‘raw’
building BCC

eBPF
verifier

eBPF core eBPF map

arm /
aarch64

JIT
bpf_func

Program loading

Data transferring

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Course outline
● Using eBPF for debugging
● Coding for eBPF in assembler
● eBPF tools

○ Kernel samples
○ Ply
○ BCC
○ SystemTap (stapbpf)
○ BPFtrace
○ Perf

● Debugging stories

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Extending the Berkeley Packet Filter
● Historically Berkeley Packet Filter

provided a means to filter network
packets

○ If you ever used tcpdump you’ve probably
already used it

○ tcpdump host beech and \(ash or oak \)

● eBPF has extended BPF hugely:
○ Re-encoded and more expressive

opcodes
○ Multiple new hook points within the kernel

to attach eBPF programs to
○ Rich data structures to pass information

to/from kernel
○ C functional call interface (an eBPF

program can call kernel function)

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Using eBPF for debugging

Userspace Kernel

Program

Update data maps

foo_kern.c

Load program

Read data maps

foo_user.c

foo_kern.o

LLVM/clang

eBPF maps

eBPF bytecode

eBPF

JIT

kprobes/ftrace

Program working flow Data transferring flow

eBPF func

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Using eBPF for debugging - cont.
● eBPF program is written in C code and compiled to eBPF bytecode

○ LLVM/clang provides us a eBPF compiler (no support in gcc)

○ Direct code generation is also possible (or LLVM without clang)

● eBPF program is loaded inside eBPF virtual machine with sanity-checking
● eBPF program is "attached" to a designated code path in the kernel

○ eBPF in its traditional use case is attached to networking hooks allowing it to filter and classify
network traffic using (almost) arbitrarily complex programs

○ Furthermore, we can attach eBPF programs to tracepoints, kprobes, and perf events for
debugging the kernel and carrying out performance analysis.

● Kernel and user space typically use eBPF map; it is a generic data structure
well suited to transfer data from kernel to userspace

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Debugging with eBPF versus tracing
Tracing is very powerful but it can also be
cumbersome for whole system analysis due
to the volume of trace information generated.

Most developers end up writing programs to
summarize the trace.

eBPF allows us to write program to
summarize trace information without tracing.

Kernel trace
events

trace-cmd

Without eBPF

Buffers

Event
processing

Frequent kernel and user space
context switching

Kernel trace
events

Kernel
eBPF

program

With eBPF

User space
statistics
program

Huge buffer size to avoid
tracing data overflow

Seldom kernel and user space
context switching

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Course outline
● Using eBPF for debugging
● Coding for eBPF in assembler
● eBPF tools

○ Kernel samples
○ Ply
○ BCC
○ SystemTap (stapbpf)
○ BPFtrace
○ Perf

● Debugging stories

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

libbpf: helper functions for eBPF
libbpf library makes easier to write eBPF programs,
which includes helper functions for loading eBPF
programs from kernel space to user space and
creating and manipulating eBPF maps:

● User program reads the eBPF bytecode into a
buffer and pass it to bpf_load_program()
for program loading and verification.

● The eBPF program includes the libbpf header
for the function definition for building, when run
by the kernel, will call
bpf_map_lookup_elem() to find an element
in a map and store a new value in it.

● The user application calls
bpf_map_lookup_elem() to read out the
value stored by the eBPF program in the kernel.

int bpf_map_lookup_elem(int fd, const void *key,
 void *value)
{
 union bpf_attr attr;

 bzero(&attr, sizeof(attr));
 attr.map_fd = fd;
 attr.key = ptr_to_u64(key);
 attr.value = ptr_to_u64(value);

 return sys_bpf(BPF_MAP_LOOKUP_ELEM, &attr,
 sizeof(attr));
}

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Coding for eBPF in assembler
The example is ~50 lines of code for eBPF
in assembler; it demonstrates the eBPF
code have components: eBPF bytecode,
syscalls, maps.

attach_kprobe() is used to enable
kprobe event and attach the event with
eBPF program.

void attach_kprobe(void)
{
 system("echo 'p:sys_read sys_read' >> \
 /sys/kernel/debug/tracing/kprobe_events")

 efd = open(“/sys/kernel/debug/tracing/events/kprobes/sys_read/id”,
 O_RDONLY, 0);
 read(efd, buf, sizeof(buf));
 close(efd);

 buf[err] = 0;
 id = atoi(buf);
 attr.config = id;

 efd = sys_perf_event_open(&attr, -1/*pid*/, 0/*cpu*/, -1, 0);
 ioctl(efd, PERF_EVENT_IOC_ENABLE, 0);
 ioctl(efd, PERF_EVENT_IOC_SET_BPF, pfd);
}

int main(void)

{

 int map_fd, i, key;

 long long value = 0, cnt;

 map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key), sizeof(value), 5000, 0);

 struct bpf_insn prog[] = {

 BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),

 BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4), /* *(u32 *)(fp - 4) = r0 */

 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),

 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = fp - 4 */

 BPF_LD_MAP_FD(BPF_REG_1, map_fd),

 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),

 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

 BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */

 BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0), /* xadd r0 += r1 */

 BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

 BPF_EXIT_INSN(),

 };

 size_t insns_cnt = sizeof(prog) / sizeof(struct bpf_insn);

 pfd = bpf_load_program(BPF_PROG_TYPE_KPROBE, prog, insns_cnt, "GPL",

 LINUX_VERSION_CODE, bpf_log_buf, BPF_LOG_BUF_SIZE);

 attach_kprobe();

 sleep(1);

 key = 0;

 assert(bpf_map_lookup_elem(map_fd, &key, &cnt) == 0);

 printf("sys_read counts %lld\n", cnt);

 return 0;

}

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Course outline
● Using eBPF for debugging
● Coding for eBPF in assembler
● eBPF tools

○ Kernel samples
○ Ply
○ BCC
○ SystemTap (stapbpf)
○ BPFtrace
○ Perf

● Debugging stories

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Kernel samples
It’s good to start from eBPF kernel samples; Linux kernel tree
provides eBPF system call wrapper functions in lib libbpf; the
samples use bpf_load.c to create map and load kernel
program, attach trace point.

Kernel and user space programs use the naming convention
xxx_user.c and xxx_kern.c, and the user space program to
use file name xxx_kern.o to search kernel program.

The user space program is compiled by GCC for executable file
and it reacts for ‘CROSS_COMPILE=aarch64-linux-gnu-’ for
cross compiling. Kernel program is compiled by LLVM/Clang, by
default it uses LLVM/Clang in distro and can specify path for new
built LLVM/Clang. Build commands:
make headers_install # creates "usr/include" directory in the build top directory

make samples/bpf/ LLC=xxx/llc CLANG=xxx/clang

sample_kern.o

sample_user.o

libbpf

bpf_load.o

sample

Kernel
program

Program loading

Data
transferring

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Sample code: trace kmem_cache_alloc_node

struct bpf_map_def SEC("maps") my_map = {
 .type = BPF_MAP_TYPE_HASH,
 .key_size = sizeof(long),
 .value_size = sizeof(struct pair),
 .max_entries = 1000000,
};

SEC("kretprobe/kmem_cache_alloc_node")
int bpf_prog2(struct pt_regs *ctx)
{
 long ptr = PT_REGS_RC(ctx);
 long ip = 0;

 /* get ip address of kmem_cache_alloc_node() caller */
 BPF_KRETPROBE_READ_RET_IP(ip, ctx);

 struct pair v = {
 .val = bpf_ktime_get_ns(),
 .ip = ip,
 };

 bpf_map_update_elem(&my_map, &ptr, &v, BPF_ANY);
 return 0;
}
char _license[] SEC("license") = "GPL";
u32 _version SEC("version") = LINUX_VERSION_CODE;

static void print_old_objects(int fd)
{
 long long val = time_get_ns();
 __u64 key, next_key;
 struct pair v;

 /* Based on current ‘key’ value, we can get next key value
 * and iterate all bpf map elements. */
 key = -1;
 while (bpf_map_get_next_key(map_fd[0], &key, &next_key) == 0) {
 bpf_map_lookup_elem(map_fd[0], &next_key, &v);
 key = next_key;
 printf("obj 0x%llx is %2lldsec old was allocated at ip %llx\n",
 next_key, (val - v.val) / 1000000000ll, v.ip);
 }
}

int main(int ac, char **argv)
{
 char filename[256];
 int i;

 snprintf(filename, sizeof(filename), "%s_kern.o", argv[0]);

 if (load_bpf_file(filename)) {
 printf("%s", bpf_log_buf);
 return 1;
 }

 for (i = 0; ; i++) {
 print_old_objects(map_fd[1]);
 sleep(1);
 }

 return 0;
}

tracex4_user.ctracex4_kern.c

Step 1: load kernel program &
enable kretprobe trace point

Step 2: kernel program
update map data

Step 3: user space program
reads map data

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Ply: light dynamic tracer for eBPF

Ply uses an awk-like mini language describing how
to attach eBPF programs to tracepoints and
kprobes. It has a built-in compiler and can perform
compilation and execution with a single command.

Ply can extract arbitrary data, i.e register values,
function arguments, stack/heap data, stack traces.

Ply keeps dependencies to a minimum, leaving libc
as the only runtime dependency. Thus, ply is well
suited for embedded targets.

https://wkz.github.io/ply/

trace:raw_syscalls/sys_exit / (ret() < 0) /
{
 @[comm()].count()
}

^Cde-activating probes

@:
dbus-daemon 2
ply 3
irqbalance 4

https://wkz.github.io/ply/
https://wkz.github.io/ply/

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

System call (sys_exit) failure statistics in ply

trace:raw_syscalls/sys_exit / (ret() < 0) /
{
 @[comm()].count()
}

^Cde-activating probes

@:
dbus-daemon 2
ply 3
irqbalance 4

predicate: filter events to match criteria

probe definition: the point(s) of instrumentation

provider: selects which probe interface to use

@: sign of map

Key value

method: common way is to aggregate data using methods, have two
functions: .count() and .quantize()

Tracing result: task name + counts

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Build ply
If applicable, please check build: Fix kernel header installation on ARM64 is in
your repository before building.

Method 1: Native compilation
 ./autogen.sh
 ./configure --with-kerneldir=/path/to/linux
 make
 make install

Method 2: Cross-Compilation

 ./autogen.sh
 ./configure --host=aarch64 --with-kerneldir=/path/to/linux
 make CC=aarch64-linux-gnu-gcc
 # copy src/ply to target board

https://github.com/iovisor/ply

$ ldd src/ply
linux-vdso.so.1 (0x0000ffff9320d000)
libc.so.6 =>
/lib/aarch64-linux-gnu/libc.so.6
(0x0000ffff93028000)
/lib/ld-linux-aarch64.so.1
(0x0000ffff931e2000)

https://github.com/iovisor/ply/pull/42/commits/74fda9a5ee48ad7e356318ff2584ed6cd6c7b5d1
https://github.com/iovisor/ply
https://github.com/iovisor/ply

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BPF Compiler Collection (BCC)
BPF compiler collection (BCC) project is a toolchain
which reduces the difficulty for writing, compiling
(invokes LLVM/Clang) and loading eBPF programs.
BCC reports errors for mistake for compiling, loading
program, etc; this reduces difficulty for eBPF
programming.

For writing short and expressive programs, high-level
languages are available in BCC (python, Lua, go, etc).

BCC provides scripts that use User Statically-Defined
Tracing (USDT) probes to place tracepoints in
user-space code; these are probes that are inserted into
user applications statically at compile-time.

BCC includes an impressive collection of examples and
ready-to-use tracing tools.

User space Kernel

Python

Lua

Front-end
libbcc.so

libbpf.so

Back-end

eBPF maps

eBPF
bytecode

eBPF

kprobes/
ftrace

C / C++

golang

bcc-tool

LLVM/
clangCompiling

Load program & read data

Trace and probe ops

BPF Compiler Collection (BCC)

Program working flow

Data transferring flow

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BCC example code
b = BPF(text="""

struct key_t {
 u32 prev_pid, curr_pid;
};

BPF_HASH(stats, struct key_t, u64, 1024);
int count_sched(struct pt_regs *ctx, struct task_struct *prev) {
 struct key_t key = {};
 u64 zero = 0, *val;

 key.curr_pid = bpf_get_current_pid_tgid();
 key.prev_pid = prev->pid;

 val = stats.lookup_or_init(&key, &zero);
 (*val)++;
 return 0;
}
""")

b.attach_kprobe(event="finish_task_switch", fn_name="count_sched")

generate many schedule events

for i in range(0, 100): sleep(0.01)

for k, v in b["stats"].items():
 print("task_switch[%5d->%5d]=%u" % (k.prev_pid, k.curr_pid, v.value))

Kernel program

Enable kprobe event

Read map data “stats”

https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py

https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py
https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Build BCC
BCC runs on the target but cannot be easily
cross-compiled. These instructions show how to
perform a native build (and work on an AArch64
platform)

Install build dependencies

sudo apt-get install debhelper cmake libelf-dev bison
flex libedit-dev python python-netaddr python-pyroute2
arping iperf netperf ethtool devscripts zlib1g-dev
libfl-dev

Build luajit lib

git clone http://luajit.org/git/luajit-2.0.git
cd luajit-2.0
git checkout -b v2.1 origin/v2.1
make
sudo make install

Build LLVM/Clang

cd where-llvm-live
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
cd where-llvm-live
cd llvm/tools
svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
cd where-llvm-live
mkdir build (in-tree build is not supported)
cd build
cmake -G "Unix Makefiles" \

-DCMAKE_INSTALL_PREFIX=$PWD/install ../llvm
make; make install

Build BCC

Use self built LLVM/clang binaries
export PATH=where-llvm-live/build/install/bin:$PATH

git clone https://github.com/iovisor/bcc.git
mkdir bcc/build; cd bcc/build
cmake .. -DCMAKE_INSTALL_PREFIX=/usr
make
sudo make install

https://github.com/iovisor/bcc/blob/master/INSTALL.md

http://luajit.org/git/luajit-2.0.git
http://llvm.org/svn/llvm-project/llvm/trunk
http://llvm.org/svn/llvm-project/cfe/trunk
https://github.com/iovisor/bcc.git
https://github.com/iovisor/bcc/blob/master/INSTALL.md

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BCC and embedded systems
● BCC native build has many dependencies

○ Dependency with libs and binaries, e.g. cmake, luajit lib, etc
○ Most dependencies can be resolved for Debian/Ubuntu by using ‘apt-get’ command
○ BCC depends on LLVM/Clang to compile for eBPF bytecode, but LLVM/Clang itself also

introduces many dependencies
● BCC and LLVM building requires powerful hardware

○ Have big pressure for both memory and filesystem space
○ Building is impossible or, with swap, extremely slow on systems without sufficient memory
○ Consumes lots of disk space. For AArch64: BCC needs 12GB, additionally LLVM needs 42GB
○ Even with strong hardware, the compilation process takes a long time
○ Save LLVM and BCC binaries on PC and use them by mounting NFS node :)

● Difficult to deploy BCC on Android system
○ No package manager means almost all library dependencies must be compiled from scratch
○ Android uses bionic C library, which makes it difficult to build libraries that use GNU extensions
○ androdeb: https://github.com/joelagnel/adeb

https://github.com/joelagnel/adeb

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

SystemTap - eBPF backend
● SystemTap introduced, stapbpf, an

eBPF backend in Oct, 2017
○ Joins existing backends:

kernel module and Dyninst

● SystemTap is both the tool and the
scripting language

○ Language is inspired by awk, and
predecessor tracers such as DTrace…

○ Uses the familar awk-like structure:
 probe.point { action(s) }

○ Extracts symbolic information based on
DWARF parsing

stap --runtime=bpf -v - <<EOF
> probe kernel.function("ksys_read") {
> printf("ksys_read(%d): %d, %d\n",
> pid(), $fd, $count);
> exit();
> }
> EOF
Pass 1: parsed user script and 61 library
scripts using
410728virt/101984res/8796shr/93148data kb, in
260usr/20sys/272real ms.
Pass 2: analyzed script: 1 probe, 2 functions,
0 embeds, 0 globals using
468796virt/161004res/9684shr/151216data kb, in
820usr/10sys/843real ms.
Pass 4: compiled BPF into "stap_10960.bo" in
10usr/0sys/33real ms.
Pass 5: starting run.
ksys_read(18719): 0, 8191
Pass 5: run completed in 0usr/0sys/30real ms.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

SystemTap - Revenge of the verifier
● eBPF verifier is more aggressive than the SystemTap language

○ Language permits looping but verifier prohibits loops (3.2 did not implement loop unrolling to
compensate)

○ The 4096 opcode limit restriction also looms
○ $$vars and $$locals cause verification failure if used (likely depends on traced function)
○ This runtime is in an early stage of development and it currently lacks support for a number of

features available in the default runtime. -- STAPBPF(8)

● SystemTap has a rich library of useful tested examples and war stories
○ Almost all are tested and developed using the kernel module backend
○ Thus it common to find canned examples that only work with the kernel module backend
○ This quickly grows frustrating… so one tends to end up using the default backend

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BPFtrace - high level tracing language for eBPF

BPFtrace allows users to write trace code with
high level tracing language for eBPF; BPFtrace
language is inspired by awk and C, and
predecessor tracers such as DTrace and
SystemTap.

BPFtrace provides one-liners commands so it’s
convenient to trace system and provides built in
variables and functions for tracing data analysis,
this is similar with ply but BPFtrace is more
versatile.

bpftrace -e
'tracepoint:raw_syscalls:sys_enter { @[pid,
comm] = count(); }'
Attaching 1 probe...
^C

@[3180, dbus-daemon]: 9
@[1, systemd]: 13
@[3526, sshd]: 18
@[3766, bpftrace]: 28
@[3186, systemd-logind]: 53
@[3530, systemd]: 1004

BPFtrace one-liner for syscall count by process

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BPFtrace with data structure support

cat > path.bt <<EOF
#include <linux/path.h>
#include <linux/dcache.h>

kprobe:vfs_open
{
 printf("open path: %s\n",
 str(((path *)arg0)->dentry->d_name.name));
}
EOF
bpftrace path.bt
Attaching 1 probe...
open path: dev
open path: if_inet6
open path: retrans_time_ms

BPFtrace depends on BCC and LLVM/Clang in its
internal mechanism. It uses uses lex/yacc parser
to convert programs to AST, then llvm IR actions to
build eBPF bytecode, finally it relies on BCC to
interact with kernel for eBPF program loading and
probes attaching.

Furthermore, BPFtrace supports data structure
with included header file, this functionality lets
users to easily to read the data structure values
even needs to traverse multiple pointers.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Build BPFtrace

Install build dependencies on olde Debian
versions:

Manually build latest BCC so meet the requirement

Install build dependencies for Debian buster:

sudo apt-get install libbpfcc-dev

Build BPFtrace

git clone https://github.com/iovisor/bpftrace
mkdir bpftrace/build; cd bpftrace/build;
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j8
make install

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

perf trace with eBPF event

perf is a suite of performance analysis tools which
provided by Linux repository, it covers both
hardware level features (e.g. PMU, timer, etc)
together with software features (e.g. tracepoint,
kprobe, etc) for performance profiling.

To decrease the bar for using eBPF in perf, perf
has enhanced to integrate Clang for automatic
eBPF program building and loading; the loaded
eBPF program can invoke perf_event_output() to
output eBPF events into user space. Different sub
commands can be facilitated for tracing, or stores
samples into perf.data for samples profiling.

 perf trace
 perf record -e bpf-kernel-prog.c
 perf report

[llvm]
 clang-path = /usr/bin/clang-7
 kbuild-dir = /work/linux-cs-dev/
 clang-opt = "-DLINUX_VERSION_CODE=0x50200 -g"
 dump-obj = true

[trace]
 #add_events =
$Linux/perf/examples/bpf/augmented_raw_syscalls.c
 show_zeros = yes
 show_duration = no
 no_inherit = yes
 show_timestamp = no
 show_arg_names = no
 args_alignment = 40
 show_prefix = yes

LLVM configurations in ~/.perfconfig

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

perf with eBPF program profiling

Perf tool also can be used to profile eBPF program
(same as other normal programs in the system)
thus it can reflect the extra workload introduced by
eBPF.

If connect with Perf’s powerful functionality for
samples profiling and program annotation, Perf tool
also can be used to profile eBPF program
performance.

So it’s interesting that eBPF can be used for
profiling and debugging, and on the other hand
perf can profile eBPF programs.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Build perf

Install build dependencies on Debian

apt-get install flex bison libelf-dev
libaudit-dev libdw-dev libunwind*
python-dev binutils-dev libnuma-dev
libgtk2.0-dev libbfd-dev libelf1
libperl-dev libnuma-dev libslang2
libslang2-dev libunwind8 libunwind8-dev
binutils-multiarch-dev elfutils
libiberty-dev libncurses5-dev

Install perf

cd $KERNEL_DIR
make VF=1 -C tools/perf/ install

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Examples
● Using eBPF for debugging
● Coding for eBPF in assembler
● eBPF tools

○ Kernel samples
○ Ply
○ BCC
○ SystemTap (stapbpf)
○ BPFtrace
○ Perf

● Debugging stories

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The story - Hunting leaks

I know I’m leaking memory (or some other
precious resource) from a particular pool
whenever I run a particular workload.
Unfortunately my system is almost ready to
ship and we’ve started disabling all the
resource tracking. Is there anything I can do
to get a clue about what is going on?

cat track.ply
kprobe:kmem_cache_alloc_node {

Can’t read stack from a retprobe :-(
@[0] = stack();

}
kretprobe:kmem_cache_alloc_node {

@[retval()] = @[0];
@[0] = nil;

}
kprobe:kmem_cache_free {

@[arg(1)] = nil;
}
ply -t 1 track.ply
3 probes active
de-activating probes

@:
<leaks show up here>

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The story - Debug kernel functions at the runtime

When I debug CPU frequency change flow
in kernel, kernel have several different
components to work together for frequency
changing, including clock driver, mailbox
driver, etc.

I want to confirm if the functions have been
properly called and furthermore to check
function arguments have expected values.

How can I dynamically debug kernel
functions at the runtime with high efficiency
and safe method?

● SystemTap and Kprobes can be used to debug
kernel function, but eBPF is safer to deploy
because the verifier will ensure kernel integrity.

● For kernel functions tracing, eBPF can avoid to
change kernel code and save time for
compilation.

● If it’s safe enough, we even can use it in
production for customer support.

● In this example, we use tools from the bcc
distribution

Inspired by: BPF: Tracing and More (Brendan Gregg)

https://www.youtube.com/watch?v=JRFNIKUROPE

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Debug kernel functions

$./tools/trace.py 'hi3660_stub_clk_set_rate "rate: %d" arg2'
PID TID COMM FUNC -
2002 2002 kworker/3:2 hi3660_stub_clk_set_rate rate: 1421000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 1421000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 1421000000
84 84 kworker/0:1 hi3660_stub_clk_set_rate rate: 903000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 903000000
84 84 kworker/0:1 hi3660_stub_clk_set_rate rate: 903000000
84 84 kworker/0:1 hi3660_stub_clk_set_rate rate: 903000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 903000000

BCC tools/trace.py can
be used to debug kernel function; this
tool can trace function with infos:
kernel or user space stack, timestamp,
CPU ID, PID/TID.

We can use tool trace.py to confirm
function hi3660_stub_clk_set_rate()
has been invoked and print out the
target frequency.

static int hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 unsigned long parent_rate)

{
struct hi3660_stub_clk *stub_clk = to_stub_clk(hw);

stub_clk->msg[0] = stub_clk->cmd;
stub_clk->msg[1] = rate / MHZ;

mbox_send_message(stub_clk_chan.mbox, stub_clk->msg);
mbox_client_txdone(stub_clk_chan.mbox, 0);

stub_clk->rate = rate;
return 0;

}

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Debug kernel functions - cont.
static int hi3660_mbox_send_data(struct mbox_chan *chan, void *msg)
{

[...]

/* Fill message data */
for (i = 0; i < MBOX_MSG_LEN; i++)

writel_relaxed(buf[i], base + MBOX_DATA_REG + i * 4);

/* Trigger data transferring */
writel(BIT(mchan->ack_irq), base + MBOX_SEND_REG);
return 0;

}

$./tools/trace.py 'hi3660_mbox_send_data(struct mbox_chan *chan, void *msg)
"msg_id: 0x%x rate: %d", *((unsigned int *)msg), *((unsigned int *)msg + 1)'

PID TID COMM FUNC -
84 84 kworker/0:1 hi3660_mbox_send_data msg_id: 0x2030a rate: 903
2413 2413 kworker/1:0 hi3660_mbox_send_data msg_id: 0x2030a rate: 903
2413 2413 kworker/1:0 hi3660_mbox_send_data msg_id: 0x2030a rate: 903

We can continue to check program flow
from high level function to low level
function for arguments, and BCC
supports C style sentence to print out
more complex data structure.

These data “watch points” can easily
help us to locate the issue happens in
which component.

For left example, we can observe the
msg_id value to check if pass correct
message ID to MCU firmware.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Statistics based on function arguments
After the kernel functionality has
been validated, we can continue to
do simple profiling based on Kernel
function argument statistics.

Using the argdist.py invocation
below, we can observe the the CPI
frequency mostly changes to
533MHz and 1844MHz.

static int hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 unsigned long parent_rate)

{
struct hi3660_stub_clk *stub_clk = to_stub_clk(hw);

stub_clk->msg[0] = stub_clk->cmd;
stub_clk->msg[1] = rate / MHZ;

mbox_send_message(stub_clk_chan.mbox, stub_clk->msg);
mbox_client_txdone(stub_clk_chan.mbox, 0);

stub_clk->rate = rate;
return 0;

}

$ tools/argdist.py -I 'linux-mainline/include/linux/clk-provider.h'
 -c -C 'p::hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate):u64:rate'

COUNT EVENT
1 rate = 903000000
1 rate = 2362000000
1 rate = 999000000
27 rate = 1844000000
31 rate = 533000000

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Summary (and thank you)

Hand-rolled
Asm Hack value?
Pure C No “magic”, great examples in kernel

Awk-like
Ply Easy to deploy esp. on embedded system
SystemTap DWARF parsing (and wait a bit?)
BPFtrace #include <linux/dentry.h>
Perf C code and facilitate perf profiling functionality

BCC Great tool for tool makers
(and running tools from tool makers)

Everything is awesome…

… and many, many thanks to
all the people who have

worked to make it so!

support@linaro.org

mailto:support@linaro.org

