ACRN

Consolidate Real-Time and HMI with ACRN Hypervisor

Jack Ren, Intel ACRN Team

Table of Contents

PART 1: What is ACRN	 page 3
PART 2: Industrial Use Case	 page 6
PART 3: Architecture	 page 7
PART 4: Roadmap	 page 14
PART 5: Call for Participation	 page 15

What is ACRN™

A flexible, open-source, lightweight hypervisor for IOT workload consolidation

A Linux Foundation Project Launched in March 2018

Value Proposition

Core Intrinsic Values

Small Footprint

- Optimized for IOT class solutions
- Significantly smaller footprint than datacenter targeted hypervisors

Heterogeneous Workloads Consolidation

- Real time & Non-Real time
- Functionally Safe & non-safe

Open-source with Flexible Licensing

- BSD license enables proprietary Guest OS
- True Open source with a vibrant Community

Other Key Values

System Security

 Intel VT backed virtualization provides secure operating domains

Secure Containers

- Intel VT backed KATA containers as virtual machines enables added security
- Kubernetes support for KATA enables ease of deployment & management

Flexible Isolation Frameworks

- Traditional virtualization w/ Shared framework
- Safety implementation w/ Partitioned framework

Beyond-Compute sharing

IO, Graphics, Media sharing capabilities

ACRN 1.0

Main Usage: Software Defined Cockpit

Ready for Production

- **100% Feature Test Coverage**
- **High Stability**
- Fast Boot and Performance KPI
- 100% CTS Pass for Android Guest

Key Features

- Safety and Security Isolation (Cluster + IVI)
- **Extensive Sharing Capabilities**
- Graphics, media, USB, audio, camera etc.
- Advanced DMA/graphics buffer sharing
- **Multiple OS Support**
- Clear Linux, Yocto, Ubuntu
- Android, AliOS
- **MISRA-C Compliance**

Released in May 2019 @github.com/projectacrn/

Industrial: Safety + RT + HMI

Key Challenges:

- Mixed Criticality:
- Real-Time vs non Real-Time
- Safety vs non-Safety
- Isolation vs Sharing
- □ Real-Time (Hard / Soft)
- GBE packet IO control loop < 12us
- MSI interrupt latency < 4us
- Cyclictest jitter < 10us
- □ HMI
- Window10
- □ Functional Safety
- IEC 61508-3 (Industrial)
- ISO 26262 (Automotive)

ACRN 2.0 Architecture

Industrial Usage: Device Mapping Table

Devices	Soft RTVM (RT Linux)	Hard RTVM (VxWorks)	HMI (Windows/Linux)
RTC	Virtual	Virtual	Virtual
PCI	Virtual	Virtual	Virtual
UART	Passthru	Passthru	Virtual/Passthru
GBE Network	Virtual (PMD) /Passthru	Virtual (PMD) /Passthru	Virtual
TSN (i210)	Passthru	Passthru	N/A
Storage	Virtual (PMD) /Passthru	Virtual(PMD) /Passthru	Virtual
FPGA	Passthru	Passthru	N/A
GPU	N/A	N/A	Mediated Passthru
Audio	N/A	N/A	Passthru
USB	N/A	N/A	Virtual
Watchdog Timer (WDT)	Virtual	Passthru / Virtual	Virtual

Certified by Intel and/or customers

ACRN + Zephyr as Safety Domain

Use Scenario

- 2 Partitions with mixedcriticality
- Static core & memory partitioning

IEC 61508 & ISO 26262 Certification Scope for ACRN

Windows as HMI domain

- □ ACRN-GT GOP is added into OVMF to support windows early display and windows installation display.
- Support OVMF secure boot with vTPM for Windows secure boot chain.
- ☐ Support the Microsoft defined TLFS(Hyper-V Hypervisor Top-Level Functional Specification) minimum requirements and optional performance optimization requirements.
- Utilize Microsoft DISM tool to pre-install virtio-win drivers and gfx driver to the Windows install .iso file.
- Use GT-CLOS to prevent Windows from Cache interference

VxWorks/RT Linux as Control domain

- Pass-through LAPIC (except ICR/XAPICD/LDR) to:
- avoid VM-exit
- Enable CAT to:
- isolate cache for RT VM
- Enable virtio BE/FE as PMD to:
- avoid VM-exit
 - Configure native BIOS to disable:
- Hyper-threading
- Speed Step
- Speed Shift
- C-state
- GT RC6
- GFX Lower Power Mode
- Native ASPM
 - . . .

Configuration for Real Time Latency Evaluation

Configuration:

- HW: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 8G Memory, 1M L2 cache, 8M L3 cache
- Benchmark: cyclictest (measure the scheduler jitter), running in Real-Time VM

ACRN:

- Service OS VM: Linux kernel v4.14.68-rt42
- Real-Time VM: Preempt-RT Linux: 4.14.68-rt42, with 2GB memory

Jailhouse:

- Root cell: Linux kernel v4.14.68-rt42
- Non-root cell: Preempt-RT Linux: Linux: 4.14.71-rt44+, with 2GB memory

cyclictest: ACRN vs Jailhouse

ACRN Open Source Roadmap in 2019

		*Feature and dates for reference	only	and subject to change without notice	es				
Area		V1.0@Q1'19		Q2'19		Q3'19		Q4'19	2020
нw	•	APL NUC (UEFI)	•	APL NUC (UEFI)	•	APL NUC (UEFI)	•	APL NUC (UEFI)	
	•	KBL NUC (UEFI)	•	KBL NUC (UEFI)	•	KBL NUC (UEFI)	•	KBL NUC (UEFI)	
	•	APL UP2 (SBL)	•	APL UP2 (SBL)	•	APL UP2 (SBL)	•	APL UP2 (SBL)	
					•	Denverton SoC	•	Denverton SoC	
Hypervisor	•	Power Management (S3/S5)	•	VxWorks as Guest	•	Real-Time for Preempt-RT	•	Windows as guest	
	•	ACRN partition mode	•	Zephyr as Guest ACRN Real-Time baseline ACRN Hybrid mode		Linux	•	VxWorks as guest	
	•	Local APIC passthrough			•	Real-Time for Pseudo Locking Real-Time profiling tool		Zephyr as Safety OS	
		Real-Time VM support			•			CPU sharing	
		iteal-fillie vivi support			•	Real-Time Performance		<u> </u>	
			•	OVMF for Clear Linux Guest support		optimization	ľ	Docker support based on Kata Containers	
			•	IOMMU interrupt remapping	•	Kata Container support			
					•	OVMF GOP driver for GVT-g			
		VM Configuration Unify	•	Device Posted Interrupt(PI)					
					•	Multiple IOAPIC support			
I/O virtualization	•	GPIO virtualization	•	SR-IOV for share mode	•	USB hub virtualization	•	Kubernetes support based on	
	•	QoS – Support RunC	•	HPET Virtualization				Kata Containers	
	•	TPM2.0 Sharing (Security)	•	Open vSwitch			•	GVT-g Gen11 support	
				I2C virtualization			•	GVT-g for Windows as Guest	
				120 VIII.UAIIZAUON					

Call to Action

Join us!

If you support the ACRN project and feel that this is the right thing for the embedded ecosystem, join us in moving this project forward together as a community member.

We need code contributors, users, and project direction influencers!

Contribute code!

Make a difference to the project by committing code, help us become a better project.

Project code merged in the past 6 months allows you to become a voting member of the Technical Steering Committee.

All Contributions Matter

In open source projects a contribution can be anything which helps the project to accomplish its mission. Examples of Contributions beyond just code include:

Financial Assistance, Requirements Gathering, Documentation, Testing, Bug Reporting