


Co-Location of Workloads with High 
Resource Efficiency

Penghao Cen (@ScorpioCPH) - Ant Financial
Jian He (@jian-he) - Alibaba Cloud



About Us

● Penghao Cen
○ Ant Financial - Infra & Data - System Engineering

○ Scheduling & Cluster Resource Management & Workloads Colocation

● Jian He
○ Alibaba Cloud Container Service



Agenda

● Resource Utilization in Large Scale Cluster

● Workloads

● Colocation on Kubernetes

● Results



Cluster Scale

● Tens of clusters

○ Tens of thousands of nodes in one cluster

○ Hundreds of GPU nodes in the same cluster with CPU nodes

● Hundreds of thousands of pods

○ Tens of thousands of jobs

● Resource cost is huge



Should We Care About Utilization?

Ref: http://csl.stanford.edu/~christos/publications/2015.christina_delimitrou.phd_thesis.slides.pdf

http://csl.stanford.edu/~christos/publications/2015.christina_delimitrou.phd_thesis.slides.pdf


Why Low Utilization?

● Dedicated nodes for latency sensitive workloads

● Gap between reserved (allocated) and used 

● Utilization varies over time 

● Nodes are heterogeneous (size, type, performance...)

dedicated pool #1
high utilization

dedicated pool #2
low utilization

dedicated pool

dedicated pool

dedicated pool



Increasing Utilization Brings Significant Cost Saving



Long Running Services Jobs

Category e-commerce website,

payment system

Spark, Flink, XGBoost,

TensorFlow Training

Latency Sensitive Insensitive

Priority High Low

Traffic Pattern Peak during daytime and 

low during night

Peak when running

Fault 

Tolerance

Should not fail, high availability Fail and retry

Workloads



Workloads - How to increase utilization?

● Overcommit?

○ Uncontrollable overcommit is dangerous

○ Overcommit should follow with reacting to dynamic load changes

○ Some resources are "compressible" (CPU) and some are not (RAM)

■ Container will be killed if they exceed their memory limit

Out of Memory



Workloads - Put them together

● Different workloads need different resource priority level 

○ High level resource for services (Production)

○ Low level resource for jobs (Preemptible)

○ Isolation is the key point - node level cgroup

Resource Level



Workloads - Put them together

● Different workloads need different resource priority level

○ Production and Preemptible

Production

SLO Guaranteed

Not Preemptible

High Priority

Preemptible

No SLO

Be killed at anytime

Low Priority



Workloads - Put them together

● How tasks are isolated from each other?

○ CGroups

■ CPU - shares/quota/cores

■ Memory - memory.limit_in_bytes

■ Disk - blkio.throttle.xxx

■ Network - priority and rate



Workloads - Put them together

● CGroup is a good approach

○ Separated node level cgroup for services and jobs

○ Custom defined resource isolation between services and jobs

/sys/fs/cgroup

cpu memory

services
70%

jobs
30%

services
50%

jobs
50%



Workloads - Put them together

● Jobs should not impact services

● Services get guaranteed resources and jobs get best effort resources

● Never over commit services resources

● Jobs are not happy if they starved to death

services jobs



Current Features in Kubernetes

● Kubelet

○ CPU Manager (CFS shares/CFS quota/CPU affinity)

○ Device Manager

● API-Server

○ Admission (mutating)

● Scheduler

○ Extended resource scheduling

● QoS Class



● Implicit QoS with request/limit

○ request & limit is zero means Best Effort

● Problems

○ Rogue best effort pods can take over all resources due to no limit

○ Request is zero meaning scheduler cannot do resource accounting and 

schedule based on request size

○ Can’t define custom cgroup parameters (cpu shares and quota)

Problems - QoS Class



● Explicit QoS with label

○ custom.qos=best-effort

● Solutions

○ Create new resource type "colocation CPU" for jobs (extended resource)

■ Make CPU as infinite resource because it is compressible

■ So we only care about memory/disk resource

○ Auto mutate request.cpu to "colocation CPU"

○ Scheduler do resource accounting based on this extended resource

○ Define custom cgroup parameters in admission mutating

Problems - QoS Class



● Admission - mutating

○ Change request CPU to "colocation CPU"

○ Set cgroup parameters in pod’s annotation

Build Colocation with Native Feature - API Server

API Server
Mutating

Pod
labels:
  custom.qos=best-effort
resources:
  request.cpu=2
  limit.cpu=4

Pod
annotations:
  cgroup.parent=jobs
  cpu.shares=2*1024
  cpu.quota=4*cpu.period
resources:
  request.cpu=0
  limit.cpu=0
  request.colocation.cpu=2
  limit.colocation.cpu=4



Build Colocation with Native Feature - Kubelet

● Extend CPU manager policy

○ Set pod level cgroup by annotation

○ Isolation in many dimensions

■ CPU CFS/memory/blkio/oom score/network priority

Kubelet
CPU Manager

Container
HostConfig:
  CgroupParent: /job/pod-uuid/xxx
  CpuShares: 2*1024
  CpuQuota: 4*CpuPeriod
  OomScoreAdj: xxx
  ...

Pod
annotations:
  cgroup.parent=job
  cpu.shares=2*1024
  cpu.quota=4*cpu.period
resources:
  request.cpu=0
  limit.cpu=0
  request.colocation.cpu=2
  limit.colocation.cpu=4



Build Colocation with Native Feature - Kubelet

● Resource Agent

○ Advertise dynamic "colocation CPU" according to node level utilization

○ Set node level cgroup by config

○ DaemonSet

○ Resource name: "colocation/cpu"

Kubelet

Node

Resource Agent

register resource "colocation/cpu" 

DaemonSet

Device Manager

$ kubectl describe node
Capacity:

 colocation/cpu:  16

Allocatable:

 colocation/cpu:  16

Resource Config
services:
  cpu.shares: xxx
  cpu.quota: xxx
  ...
jobs:
  cpu.shares: xxx
  cpu.quota: xxx
  ...



Dynamic colocation resource

- Resource auto profiling

- More colocation resource means more jobs

Colocation on Kubernetes - Resource Agent

allocatable colocation resource

low services utilization

allocatable           resource

high services utilization

JobJob Job

Job



More related works

● CRD

○ Quota - cluster level

○ PodGroup - gang scheduling

● Resource Auto-Profiling

○ VPA

○ HPA

● Unified-Scheduler

○ Priority and Preemption



Architecture

Services

Jobs

Node
set container cgroup

resource-agent
set node cgroup

API Server
cgroup auto-mutating

Scheduler
extended-resource

Advertise colocation CPU

Node
set container cgroup

resource-agent
set node cgroup

Node
set container cgroup

resource-agent
set node cgroup



Results - Services

● CPU utilization 10%-15%



Results - Jobs

● CPU utilization 20%-30%



Results - Services + Jobs

● CPU utilization 35%-50%



OpenKruise - Automate everything!

https://github.com/openkruise/kruise

https://github.com/openkruise/kruise


Q & A

             Thanks  


