

How to make Smart Cities stay smart with Open Source Projects

Yoshitake Kobayashi, Toshiba Corp., CIP TSC Chair Open Source Summit China, Shanghai, June 25-26, 2019

IoT today – connecting systems

Connected Cars

Find and rent cars via smart phone. Monitor fleets and provide service.

Smart City

Multimodal transportation, intelligent traffic control, smart energy management, emergency management, ...

Industry

Collect data to improve processes (cost, quality, speed). Minimize downtimes by predictive maintenance.

Challenges when applying IoT to Civil Infrastructure

"Hidden" Industrial IoT Systems

Transport

Rail automation

Vehicle control

Automatic ticket gates

Energy

Power Generation

Others

Building automation

Broadcasting

Healthcare

Industry

Industry automation

CNC control

Industrial communication

Smart Cities combine consumer & industrial IoT

Consumer IoT

End user interfaces and comfort features

Industrial (grade) IoT

Digital backbone of connected systems

Permanent cloud connection required.

Quality and availability: Best effort

Low-cost / high volume

Complex systems: local intelligence + centralized intelligence 24/7 operation even with no connection to backend.

Guaranteed latency, throughput, and responsiveness.

The key challenges

• Apply IoT concepts to industrial systems.

• Ensure quality and longevity of products.

 Keep millions of connected systems secure. Industrial grade

- Reliability
- Functional Safety
- Real-time capabilities

Sustainability

- Product life-cycles of decades
- Backwards compatibility
- Standards

Security

- Security & vunerability managment
- Firmware updates
- Minimize risk of regressions

Open Source meets Industrial Challenges

What is Open Source Software (OSS)

Source <u>Wikimedia Commons</u> (<u>Creative Commons Attribution 2.0 Generic</u> license)

Example: Linux Foundation

Example: Linux Foundation

The Linux Foundation is a Critical Part of the Tech Ecosystem

In 2018, the Linux Foundation added a new member every day.

Speed and efficiency: focus on differentiating parts

Handling increasing complexity with constant development resources

Join forces by leveraging commodity components, partnering, and adapting open source software.

Proprietary

application

Operating

System

Open source software ensures long-term availability, flexibility, and maintainability without vendor lock-in.

2000 - 2015

Differentiating

Proprietary

application,

proprietary

pperating system

Up to 2000

How to solve the Key Challenges

Facts and Issues: Smart City uses Commodity Software

Facts

- Millions or trillions smart devices
- Similar software components (e.g. Linux)
- Industrial IoT requirements
 - Security
 - Sustainability
 - Industrial-grade

Issues

- A lot of products have to meet IIoT requirements
- Same development and maintenance efforts spent by many companies or even business units
- No common solution for base building blocks

CIP is the Solution

Open Source Base Layer
of industrial-grade software
to enable the use and
implementation of software
building blocks for
Civil Infrastructure Systems

What is "Open Source Base Layer (OSBL)"?

Layered Linux distribution for industrial products, utilizing and influencing the relevant Open Source projects:

company-specific middleware and applications

scope of a typical Linux distribution

additional packages (hundreds)

CIP Core packages *(tens)*

CIP kernel (10+ years maintenance, based on LTS kernels)

Mapping CIP into the company

Layered Linux distribution for industrial products, utilizing and influencing the relevant Open Source projects:

Up to 70% effort reduction achievable for OSS license clearing and vulnerability monitoring, kernel and package maintenance, application adaptation and testing for an individual product.

The backbone of CIP are the member companies

Developers, maintainers

Contribution & usage / integration

Open Source Projects (Upstream work)

CIP lays the Foundation for Sustainable Smart Cities

Scope of activities

On-device software stack

Product development and maintenance

CIP governance structure and projects

Collaborative development with other OSS projects

Upstream Projects

Contribute, Collaborate and use by CIP

KernelCl

Contributing by CIP members as future candidates

2 Use the upstream code

1 Upstream first

CIP Open Source Base Layer (OSBL)

1 CIP SLTS kernel development (Upstream first development)

Goal

- Providing CIP kernels with more than 10 years maintenance period
 - Super Long Time Stable kernel
- Status
 - CIP SLTS kernels has been released
 - Linux 4.4.166-cip29
 - Linux 4.19.13-cip1
 - https://git.kernel.org/pub/scm/lin ux/kernel/git/cip
 - CIP kernel team participate into LTS review process

Real-time Linux development (PREEMPT_RT)

Goal

- Provide CIP SLTS kernel with real-time enhancement (RT_path)
- Work with Real-time Linux Project to standardize Real-time enhancement

Status

- CIP SLTS RT kernels has been released
 - Linux 4.4.166-cip29-rt21
 - Linux 4.19.13-cip1-rt
 - https://git.kernel.org/pub/scm/linux/ kernel/git/cip
- Test results are available on CI-RT
 - https://ci-rt.linutronix.de/RT-Test/

3 CIP Testing

- Goal
 - Providing a test environment to test the CIP kernel and more
 - Single developer can test at their desk
- Current status
 - The first version B@D already released
 - https://gitlab.com/cip-project/boardat-desk-single-dev

4 CIP Core

Goal

- Provide a reference implementation with CIP core packages for testing
- Following implementations will be provided
 - Tiny profile
 - eg. Small IoT devices
 - Debian profile
 - eg. IoT gateways

Status

- CIP Core Tiny profile has been released
 - https://gitlab.com/cip-project/cip-core
- PoC implementation is available for Debian profile
 - https://gitlab.com/cip-playground/isarcip-core

Security working group

Goal

 Provide guidelines and reference implementations to help developers to meet cybersecurity standard requirements (IEC 62443)

Status

- Started for feasibility study
- A demonstration scheduled at OSS Japan in July

6 Software update working group

- Goal
 - Incorporate a common solution for software updates into CIP core

- Status
 - Just started

Eclipse IoT hawkBit

https://www.eclipse.org/hawkbit/

https://github.com/sbabic/swupdate

Summary

- CIP today focuses on
 - Kernel maintenance: maintaining Linux kernels for very long time including realtime support
 - **Testing:** providing a test infrastructure and evolve tests
 - CIP Core packages: a set of industrial-grade components that require very long-term maintenance including the required build tool chains
 - Security: Improving to have security features and to follow Cyber Security Standard
 - Software update: Incorporate a common solution for software updates into CIP core
 - Collaboration: Linux, Debian/Debian-LTS, Real Time Linux, Reproducble Builds, EdgeX Foundry

Conclusion

- Our Civilization needs an Open Source Base Layer of industrial-grade software
 - CIP provides this, using Linux
- Sustainability is ensured by
 - The backing of big industrial and semiconductor companies
 - Close cooperation with and building with mature Open Source projects (Debian, PREEMPT_RT, KernelCI, ...)
 - Providing suitable tool chains
 - Ensuring in-depth tests
- Contribution and collaboration with upstream projects are the key CIP activities

Join us

CIP for sustainable Smart Cities with Open Source Software

Contact Information and Resources

To get the latest information, please contact:

CIP Mailing list: <u>cip-dev@lists.cip-project.org</u>

Other resources

- Twitter: @cip_project
- CIP Web site: https://www.cip-project.org
- CIP news: https://www.cip-project.org/news/in-the-news
- CIP Wiki: https://wiki.linuxfoundation.org/civilinfrastructureplatform/
- CIP source code
 - CIP GitLab: https://gitlab.com/cip-project
 - CIP kernel: git://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git

Question?

Thanks for your attention!

