
Anomaly Detection for Cloud Native Storage
Xing Yang, OpenSDS and Seiya Takei, Yahoo! JAPAN

2

Agenda
• Introduction to anomaly detection

• Anomaly detection in storage performance

• Yahoo! JAPAN use cases

• Telemetry
• Integrate with Prometheus and Grafana

• Collect performance metrics from storage backends

• Metrics drivers: LVM, Ceph, other storage systems…

• Anomaly detection
• Detect anomalous data points based on metrics collected from Telemetry.

• Demo

3

What is Anomaly Detection
• Anomaly detection is a

technique used
to identify unusual
patterns that do not
conform to expected
behavior, called outliers.

• Categories of anomalies:
• Point anomalies
• Contextual anomalies
• Collective anomalies

4

Anomaly Detection Use Cases
• Intrusion detection

• identifying strange patterns in network traffic that could
signal a hack

• Medical health
• spotting a malignant tumor in an MRI scan

• Fraud detection
• credit card, cell phone, insurance claim fraud, etc.

• Fault detection
• mechanical units, etc.

• Anomaly detection in storage
• disk failure, etc.

5

Storage Performance Challenges

Source: Using Machine Learning for Intelligent Storage Performance Anomaly Detection

https://www.snia.org/sites/default/files/SDCIndia/2018/Slides/6%20-%20IBM%20-%20Storage%20Performance%20Anomaly%20Detection.pdf

6

Yahoo! JAPAN’s Environment

• Private Cloud
• IaaS

• 140,000 VMs
• PaaS

• 30,000 Containers
• CaaS

• 390 Kubernetes clusters

• OpenStack/Kubernetes clusters each have storage
• There are many storages in Yahoo! JAPAN’s environment

7

Storage for Private Cloud

Cinder

Manila

Swift Cinder

Manila

Swift Cinder

Manila

Swift Persistent
Storage

Persistent
Storage

• We want to manage storages using OpenSDS
• If telemetry and anomaly detection can be managed by OpenSDS,

we can manage many storages easier

8

Future environment we hope

Storage

OpenSDS

Storage Storage Storage Storage

9

• OpenStack/kubernetes backend storage

• Running SDS in Yahoo! JAPAN’s environment

• Ceph

• Using in test environment

• Quobyte

• Started using it end of last year

• Difficult to operate

• Health management of distributed system

• server, network, ...

• Telemetry and Anomaly Detection are very important

Software Defined Storage

The Open Autonomous Data Platform

10

11

The Road To Autonomous Data Platform

12

Telemetry
• ML module sends requests using Metrics API that

generates data.

• Collector collects metrics from metrics drivers.

• Adapter includes a Converter that converts data to a
proper format that can be understood by the receiving
end, e.g., Prometheus, and an Exporter that
sends(emits) the data to the intended destination.

• ML module receives data through Kafka. ML module
also retrieves additional data using Metrics API which
gets data from Prometheus.

• Collected metrics include IOPs, bandwidth, latency,
average CPU usage, etc. for various resources such
as storage controller, pools, volumes, disks, etc. For
Ceph, an existing Prometheus Ceph exporter will be
used. Prometheus Node exporter will also be used to
collect node metrics.

• OpenSDS dashboard is integrated with Grafana to
display metrics and Prometheus Alert Manager to
show alerts.

13

Collecting Storage Performance Metrics

14

Prometheus Architecture

15

Emit Metrics to Prometheus
• Post request will be

sent to the Metrics
driver to collect
metrics

• Get request will be
re-routed to
Prometheus server
using PromQL

• Metrics will be saved
in Prometheus
database.

16

Metrics interface

type MetricSpec struct {

InstanceID string

InstanceName string

Job string

Labels map[string]string

Component string

Name string

Unit string

AggrType string

MetricValues []Metric

}

type Metric struct {

Timestamp int64

Value float64

}

type CollectMetricSpec struct {

*BaseModel

DriverType string

}

type GetMetricSpec struct {

*BaseModel

InstanceId string

MetricName string

StartTime string

EndTime string

}

func CollectMetrics() ([]*model.MetricSpec, error)

17

Collect LVM Metrics

• resource: volume
• metrics:

o iops (tps)
o read_throughput (kb/s)
o write_throughput (kb/s)
o response_time (ms)
o service_time (ms)
o utilization_percentage (%)

• Tools:
• lvmsar (LVM system activity reporter)
• iostat

• resource: disk
• metrics:

o iops (tps)
o read_throughput (kb/s)
o write_throughput (kb/s)
o response_time (ms)
o service_time (ms)
o utilization_percentage (%)

18

• Use existing Ceph exporter in Prometheus

Collect Ceph Metrics
• resource: pool
• metrics:

o pool_used_bytes
o pool_available_bytes
o pool_objects_total
o pool_dirty_objects_total
o pool_read_total
o pool_read_bytes_total
o pool_write_total
o pool_write_bytes_total

• resource: cluster
• metrics:

o …...

19

LVM Metrics in Grafana

20

LVM Metrics in Grafana

21

Emit Metrics to Prometheus
(recap)

• Post request will be
sent to the Metrics
driver to collect
metrics

• Get request will be
re-routed to
Prometheus server
using PromQL

• Metrics will be saved
in Prometheus
database.

22

Prometheus Alert Manager
• The alert rules are

configured in Prometheus,
and on the thresholds being
crossed, Prometheus will
raise an alert to the
Alertmanager. Alerts can be
defined on raw metrics and
derived metrics.

• The Anomaly Detection
module detects an anomaly,
raises a custom alert to
Alertmanager using the
REST API interface of
Alertmanager

23

Send Metrics through Kafka

24

Anomaly Detection Architecture

• Data Generator runs a cronjob that calls
Telemetry POST API to generate metrics
periodically.

• Data Parser receives data from Telemetry thru
Kafka and saves it in database.

• Training Service trains models using data from
database and selects an optimal model.

• Prediction Service uses selected model to
predict anomalous data points, generate alerts
and send to Telemetry.

25

Anomaly Detection Algorithms
• Classification based

• A classifier that can distinguish between normal and anomalous classes can be
learned in the given feature space.

• Nearest neighbor based
• Normal data instances occur in dense neighborhoods, while anomalies occur far

from their closest neighbors.
• Clustering based

• Normal data instances belong to a cluster in the data, while anomalies either do
not belong to any cluster.

• Information theoretic
• Anomalies in data induce irregularities in the information content of the data set.

• Spectral
• Data can be embedded into a lower dimensional subspace in which normal

instances and anomalies appear significantly different.
• Statistical models

• Gaussian model
• Regression model Reference: Anomaly Detection : A Survey

http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf

26

Gaussian Model
• The Gaussian model is a

statistical model that assumes
the pattern of the dataset
follows the gaussian
distribution.

• A threshold needs to be
specified to differentiate
between normal and abnormal
data points.

by Andrew Ng

Source: Normal Distribution

https://en.wikipedia.org/wiki/Normal_distribution

27

DBSCAN Clustering
• DBSCAN refers to Density-

Based Spatial Clustering
Applications with Noise.
Clustering is used to group
similar data instances into
clusters. DBSCAN is a
clustering model designed to
discover clusters of arbitrary
shape based on density.

• The algorithm has two input
parameters ɛ and minPts.

Source: Density Based Clustering

DBSCAN categories the data
points into three categories: Core
Points, Border Points, and Outlier.

https://blog.dominodatalab.com/topology-and-density-based-clustering/

28

Gaussian Model Graph – LVM
• Volume level metrics

• IOPs

• Latency

• Data generation: used dd for
random writes and bonnie++ for
heavy workloads

• Data processing: 6000 data points
collected in 2 days, removing
zeros.

• mean: [259.76 3105.44]

• covariance: -16620.57

• epsilon: -41.80

• f1_score: 0.8

29

• Volume level metrics
• IOPs
• Latency

• Data generation: used dd for
random writes and bonnie++ for
heavy workloads

• Data processing: 6000 data
points collected in 2 days,
removing zeros

• epsilon: 1.40
• minPts: 11
• adjusted_rand_score: 0.69

DBSCAN Graph – LVM

30

POC Setup
• MongoDB running on a volume provisioned

by OpenSDS CSI plugin in Kubernetes
environment with Ceph backend

• Collect metrics from Ceph, node-exporter,
and MongoDB

…...
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
name: mongod

spec:
serviceName: mongodb-service
replicas: 3
template:
metadata:
labels:
role: mongo
environment: test
replicaset: MainRepSet
name: mongo

spec:
…...

…...
volumeClaimTemplates:
- metadata:

name: mongodb-persistent-storage-claim
annotations:
volume.beta.kubernetes.io/storage-class: "csi-sc-opensdsplugin"

spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 1Gi

…...

31

DBSCAN Graph - Ceph
• Ceph Client IOPs

• Data generation: MongoDB tools

Workload Driver and MongoDB

Multithreaded Performance Test

Tool were used to generate

MongoDB workloads

(insert/delete/update/find)

• Data processing: 6000 data

points collected in 6 hours,

removing zeros

• epsilon: 0.30

• minPts: 10

• adjusted_rand_score: 0.77

https://github.com/johnlpage/POCDriver
https://github.com/idealo/mongodb-performance-test

32

DBSCAN Graph - Ceph
• Ceph Client IOPs

• Data generation: MongoDB tools

Workload Driver and MongoDB

Multithreaded Performance Test

Tool were used to generate

MongoDB workloads

(insert/delete/update/find)

• Data processing: 1000 data

points collected in more than 1

hour, removing zeros

• epsilon: 0.30

• minPts: 10

• adjusted_rand_score: 0.84

https://github.com/johnlpage/POCDriver
https://github.com/idealo/mongodb-performance-test

33

DBSCAN Graph - Node Exporter
• Node Exporter

• Node Memory Available (MB)

• Data generation: MongoDB tools
Workload Driver and MongoDB
Multithreaded Performance Test
Tool were used to generate
MongoDB workloads
(insert/delete/update/find)

• Data processing: 1000 data
points collected in more than 1
hour, removing zeros

• epsilon: 0.50
• minPts: 10
• adjusted_rand_score: 0.84

https://github.com/johnlpage/POCDriver
https://github.com/idealo/mongodb-performance-test

34

DBSCAN Graph - MongoDB
• MongoDB Global Lock Current Queue

• Data generation: MongoDB tools

Workload Driver and MongoDB

Multithreaded Performance Test Tool

were used to generate MongoDB

workloads (insert/delete/update/find)

• Data processing: 1000 data points

collected in more than 1 hour, removing

zeros

• Gap between 2 clusters indicates a period

with no data generated

• epsilon: 0.30

• minPts: 10

• adjusted_rand_score: 0.64

https://github.com/johnlpage/POCDriver
https://github.com/idealo/mongodb-performance-test

35

Demo Placeholder

36

What’s Next
• Collect more data ……
• Correlate storage metrics, node-exporter metrics, with

performance issues in applications running on
storage provisioned by OpenSDS in Kubernetes
environment

• Other algorithms to consider
• Random forest
• ARIMA - AutoRegressive Integrated Moving Average
• …...

• Continue the journey towards self-driving storage ...

37

The Road To Autonomous Data Platform

