
Kubernetes Housekeeping
How K8s manages resources and keeps its house clean!

Hello! I am Damini Satya

Software Engineer at Salesforce
Open Source contributor - @kubernetes

Twitter - @Daminisatya

Hello! I am Mitesh Jain

Lead Systems Engineer
Open Source deployments in public and private clouds

Ex - RedHat, GE, Wipro and Salesforce.com

Twitter - @MiteshSKJ

Agenda

● Introduction
● Garbage Collector Controller
● Kubelet
● Eviction Manager
● Node conditions
● Reclaim
● Best practices

Garbage Collection in K8s

Garbage Collection in K8s Master

kube-controller-manager

● Component on the master that runs controllers.

● [flags]
○ --enable-garbage-collector
○ --terminated-pod-gc-threshold
○ --concurrent-gc-syncs

Garbage Collector Controller

● Graph builder

● attemptToDelete & attemptToOrphan queues

Garbage Collector Controller Configuration

● enable-garbage-collector - Default: true
● concurrent-gc-syncs - Default: 20
● terminated-pod-gc-threshold - Default: 12500

Owners and Dependents

● Owners (Parent)
● Dependents (Child)
● metadata.ownerReferences
● Multiple ownerReferences

Delete dependents

● Orphan
● Foreground cascading deletion
● Background cascading deletion

Orphan

Foreground cascading deletion

Background cascading deletion

Garbage Collection in K8s Node

Kubelet

An agent that runs on each node in the cluster. Apart from making sure that
containers are running in a Pod it also performs the task of monitoring and
managing resource on the nodes.

Kubelet Configuration

● CLI options (KUBELET_EXTRA_ARGS)
● Config file (/var/lib/kubelet/config)
● Dynamic Configuration

Resource Handling

● Trigger configuration - Defines threshold for resources which will trigger
garbage collection or eviction.

● Policy configuration - Defines parameters used to govern when and how a
resource is evicted/managed.

Image Garbage Collector (to be deprecated)

● Image Garbage Collector deletes the unused images in the nodes.

● Set for deprecation in favour of Eviction Manager

● Flags
○ imageGCHighThresholdPercent: 85
○ imageGCLowThresholdPercent: 80

Image Garbage Collector additional flags

image-gc-high-threshold
In favour of eviction-hard or eviction-soft which can trigger image
garbage collection.

image-gc-low-threshold In favour of eviction-minimum-reclaim which achieves the same behavior.

low-diskspace-threshold-mb
In favour of eviction-hard or eviction-soft as eviction generalizes disk
thresholds to other resources.

outofdisk-transition-frequency
In favour of eviction-pressure-transition-period as eviction generalizes
disk pressure transition to other resources.

maximum-dead-containers deprecated once old logs are stored outside of container’s context

maximum-dead-containers-per-container deprecated once old logs are stored outside of container’s context

minimum-container-ttl-duration deprecated once old logs are stored outside of container’s context

Eviction Manager

Eviction Manager is a sub process of kubelet which monitors the system
resources and takes action based on the configured thresholds and policies.

Eviction Monitoring Interval

● housekeeping-interval

Eviction Manager Policies

● Hard Eviction Thresholds

● Soft Eviction Thresholds

● Oscillation of node conditions

● Minimum eviction reclaim

Eviction Manager - Hard Eviction Thresholds

Eviction Manager - Hard Eviction Thresholds

● Flags
○ eviction-hard - describes a set of eviction thresholds.

● Example
○ --eviction-hard=”imagefs.available<15%,memory.available<600Mi”

Eviction Manager - Soft Eviction Thresholds

Eviction Manager - Soft Eviction Thresholds

● Pairs an eviction threshold with a required grace period.
● Flags

○ eviction-soft - describes a set of eviction thresholds
○ eviction-soft-grace-period - describes a set of eviction grace periods
○ eviction-max-pod-grace-period - describes the maximum allowed grace period (in

seconds) to use when terminating Pods in response to a soft eviction threshold being met.

● Example
○ --eviction-soft=”memory.available<600Mi”

--eviction-soft-grace-period=”memory.available=1m30s”

Eviction Manager - Oscillation of Node Conditions

Eviction Manager - Oscillation of Node Conditions

● If a node is oscillating above and below a soft eviction threshold, but not
exceeding its associated grace period, it would cause the corresponding
node condition to constantly oscillate between true and false, and could
cause poor scheduling decisions as a consequence.

● Flag
○ eviction-pressure-transition-period - duration for which the kubelet has to wait before

transitioning out of an eviction pressure condition.

Eviction Manager - Minimum Eviction Reclaim

Eviction Manager - Minimum Eviction Reclaim

● In certain scenarios, eviction of Pods could result in reclamation of small
amount of resources. Such scenarios, can result in kubelet hitting eviction
thresholds in repeated successions. As eviction of resources like disk, is
time consuming, this will keep the node in constant pressure.

● Flags
○ eviction-minimum-reclaim - describes minimum reclaim amount for a set of eviction

thresholds

● Example
○ --eviction-hard=”imagefs.available<10Gi,memory.available<600Mi”

--eviction-minimum-reclaim=”imagefs.available=2Gi,memory.available=0”

● The default eviction-minimum-reclaim is 0 for all resources

Node Conditions

● kubelet reports node status updates to the Master at regular interval.

● Configurable --node-status-update-frequency (defaults to 10s)

● kubectl get nodes <NODE_NAME> -o json OR
kubectl describe node <NODE_NAME>

● Conditions
○ Disk Pressure
○ Memory Pressure
○ Pid Pressure

Disk Pressure

● kubelet supports only two filesystem partitions.
○ nodefs filesystem
○ imagefs filesystem

.

● Eviction Signals
○ nodefs.available, nodefs.inodesFree, imagefs.available, or imagefs.inodesFree
○ Default:

■ nodefs.available<10%
■ nodefs.inodesFree<5%
■ imagefs.available<15%

● Examples
○ --eviction-hard=”imagefs.available<10Gi”
○ --eviction-hard=”imagefs.available<20%”

Disk Pressure Condition

Disk Pressure - kubelet log

Memory Pressure

● Available memory on the node has satisfied an eviction threshold.

● Eviction signals
○ memory.available - Uses /proc/meminfo and cgroup info to compute available memory
○ Default:

■ memory.available<100Mi

● Example
○ --eviction-hard=”memory.available<600Mi”

Memory Pressure Condition

Memory Pressure - kubelet log

Node OOM

● System oom_killer

● oom_score_adj values
○ Guaranteed -998
○ BestEffort 1000
○ Burstable

● Unlike Pod eviction, if a Pod container is OOM killed, it may be restarted by
the kubelet based on its RestartPolicy

Reclaim

● Delete dead Pods and their containers

● Delete all unused (unreferenced) images

● Evict end-user Pods

Reclaim - Node level disk space

● With imagefs
○ If nodefs filesystem has met eviction thresholds, kubelet frees up disk space by deleting

the dead Pods and their containers.
○ If imagefs filesystem has met eviction thresholds, kubelet frees up disk space by deleting

all unused images.

● Without imagefs
○ If nodefs filesystem has met eviction thresholds, kubelet frees up disk space in the

following order:
■ Delete dead Pods and their containers
■ Delete all unused images

Reclaim - Pod Ranking for Eviction

● Criteria for ranking of Pods for eviction
○ Whether or not a Pod’s usage of the starved compute resource exceeds requests.
○ Pod’s Priority
○ Consumption of the starved compute resource relative to scheduling requests.

● Ranking
○ BestEffort or Burstable Pods

■ If a Pod’s usage of a starved resource exceeds its request. They are ranked by
Priority, and then by usage above request.

○ Guaranteed and Burstable Pods
■ If a Pod’s usage is beneath requests they are evicted last.
■ If at all, evict Pods of Lowest Priority first.

(Cont.) Reclaim - Pod Ranking for Eviction

● Inode starvation - evict Pods with the lowest quality of service first.
● Disk space starvation - evict Pods with largest disk consumption amongst

the lowest quality of service first.
○ With imagefs

■ If nodefs is triggering evictions, kubelet sorts Pods based on the usage on nodefs -
local volumes + logs of all its containers.

■ If imagefs is triggering evictions, kubelet sorts Pods based on the writable layer
usage of all its containers.

○ Without imagefs
■ If nodefs is triggering evictions, kubelet sorts Pods based on their total disk usage -

local volumes + logs & writable layer of all its containers

Scheduler

● Memory Pressure
○ No new BestEffort Pods are scheduled to the node

● Disk Pressure
○ No new Pods are scheduled to the node

Best Practices

● Use config file and manage via configuration management system or use
dynamic Configuration.

● Watchout and avoid parameters to be deprecated.

● Reserve resources for system (system-reserved & kube-reserved) and
compute thresholds accordingly.

● Enforce judicious use of priority and QoS flags while deploying apps/pods as
the ranking for eviction is computed based on them.

(Cont.) Best Practices

● If application requires time to drain while stopping, Use soft-eviction and
thresholds to gracefully terminate the pods instead of being killed instantly.

● Use minimum Eviction and oscillation parameters to prevent aggressive and
time consuming evictions/reclaim.

● Evictions may lead to an unbalanced cluster. Keep a watch on hotspots and
underutilized nodes.

● Plan early!

Thank You!

