
Vitess at HubSpot
How We Moved Hundreds of MySQL Databases

into Kubernetes

Tom Petr, Alex Charis
KubeCon 2018

What is HubSpot?

Thousands of microservices

Hundreds of deploys each day

Many small, autonomous teams

2013...

Clunky CI pipeline

Flaky ssh-based deployments

No elasticity

No automation

Singularity

...2016: What about infrastructure?

!

Data
at HubSpot
in 2016

MySQL Scalability Woes

MySQL Scalability Woes

MySQL Scalability Woes

m4.xl
m4.2xl

m4.4xl

MySQL Scalability Woes

So what now?

So what now?

So what now?

So what now?

What is Vitess?

What is Vitess?

What is Vitess?

What is Vitess?

What is Vitess?

But how?

But how?

What’s an operator?

Keyspace??
Oh, StatefulSet!

Custom Resources
kind: PodDisruptionBudget

 maxUnavailable: 1

kind: CronJob

 schedule: 32 */09 * * *

kind: StatefulSet

 replicas: 3
 containers: ...

kind: Keyspace

 name: Memes
 perfClass: medium
 replicas: 3
 sensitive: false

Anatomy of a Pod

TLS

Lots of other work: VtgatePool CRD

TLS

Lots of other work: JDBC driver

TLS

Lots of other work: TLS certs

TLS

Lots of other work: Orchestrator Integration

TLS

Lots of other work: SQL grammar

TLS

Migration

Migration

Migration

Migration

Migration

Migration

Migration

Migration

zero downtime

Protecting against cluster maintenance

GOOD
pod-1

Replica
pod-0
Master

pod-2
Replica

pod-0
Master

pod-2
Replica

pod-1
Replica NOT GREAT

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
spec:
 maxUnavailable: 1
 selector:
 matchLabels:
 app: vitess
 component: vttablet
 keyspace: Memes
 role: serving
 shard: "0"

pod-2
Replica

pod-1
Replica TRULY BAD

pod-0
Master

Injecting Vault secrets into Pods

apiVersion: hubspot.com/v1
kind: SecretTemplate
metadata:
 name: thegoods
data:
 aws_access_key:
 vaultKey: mykey
vaultMount: hs-engineering

Secret
Updater

apiVersion: v1
kind: Secret
metadata:
 name: thegoods
data:
 aws_access_key: aGVsbG8K

Vault

Parameterizing configuration in Docker images

hs-render-template

[client]

user="root"

password="{{ vault.mysql_password }}"

ssl_cert={{ downward.client_cert }}

ssl_key={{ downward.client_key }}

Downward API
Node metadata

YAML files
Env vars

[client]

user="root"

password="XXX"

ssl_cert=YYY

ssl_key=ZZZ

/etc/templates/my.cnf.tmpl /etc/my.cnf

Terminating Pods gracefully

vttablet

mysql
while tablet-is-running; do

sleep 5
done

if [[$TABLET_TYPE == “master”]]; then
 vtctl PlannedReparentShard ...
fi

Pod

cron

fluentd

collectd

Tapping into (nearly) infinite resources

Hacking around bugs
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gp2-xfs
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2
 fsType: xfs

Fixed in #45345

Protecting against rapid IP address reuse

Node

kubelet

CNI
plugin

docker

--network=hsnet

hsnet
IPAM
plugin

Optimizing Vitess Backups

Master pod

Replica pod

Replica pod

Backup pod

time

Create flexvol

Backup pod

Backup pod

Destroy flexvol

No volume, no waste!

Idle volume... wasted $$$

Destroy flexvol

Backup pod

Create flexvol

Controlling StatefulSet rollouts

(worst-case scenario)

pod-0
Master

pod-1
Replica

pod-2
Replica

failover

→

pod-0
Replica

pod-1
Master

pod-2
Replica

failover

→

pod-0
Replica

pod-1
Replica

pod-2
Master

failover

Controlling StatefulSet rollouts

pod-0
Replica

pod-1
Replica

pod-2
Master

→

pod-0
Replica

pod-1
Replica

pod-2
Master

→

pod-0
Replica

pod-1
Replica

pod-2
Master

failover

DeletePropagationOrphan FTW

Lessons learned: It’s a transplant

Results: DBaaS

Results: Trivial Read Scaling

Results: Bin Packing

Results: Sharding

Results: Automated Impairment Handling

Results: Finally I can sleep

Thanks and Q&A

vitess.io hubspot.com

