
Using Kubernetes to offer
scalable deep learning on
Alibaba Cloud

Who are we?

Yang Che
Senior engineer of Alibaba Cloud

Kai Zhang
Staff engineer of Alibaba Cloud

Container service, Kubernetes, Deep learning platform

Agenda

²  Challenges of running large scale deep learning
²  Container based solution on Alibaba cloud
²  Kubeflow and Arena
²  Key requirements in real life
²  User cases
²  Future works

How does data scientists run deep
learning?

• Optimization
• Scaling
• Tuning

Update/
Scale out

Debug

Prepare
data

Build
model

Train

Inference

ü  End to end - Data in, executable out
ü  Long time - hours/days/weeks
ü  Iterative optimization - gradient

descent, hyper parameters tuning
ü  Massive data, massive

computation

Challenges of deep learning at scale

1.  Heterogeneous computing resources management
-  CPU, GPU, (X)PU, FPGA, RDMA

2.  End to end support for deep learning experiments
-  Prepare data -> build/train/evaluate model -> release model, and repeat !!!

3.  Continuously train and serve models at large scale
-  Cost effective scaling on demand

Deep learning solution on Alibaba
Cloud container service
Reference architecture

Operations Develop

Network Compute

CPU GPU

Elastic Compute Service Storage

NAS/NFS

Container service
(Docker+Kubernetes)

Auto scaling Docker Registry
Service

Train

Training monitoring

Logging\profiling

Load balance

VPC

github

Jupyter Notebook

Inference

Resource
monitoring

Tensorflow，Caffe，Pytorch
MXNet，Keras, …

Tensorflow-serving

Data
preparation

EMR

OSS

HDFS

Hadoop
CPFS

RDMA

Spark

Seldon / TensorRT iference
server

A/B test, canary
release

FPGA

Orchestration & workflow (kubeflow/arena/pipelines)

Agenda

²  Challenges of running large scale deep learning
²  Container based solution on Alibaba cloud
²  Kubeflow and Arena
²  Key requirements in real life
²  User cases
²  Future works

How to accelerate deep learning

Ø  Composability
•  Composable workflow
•  Continuous training pipelines
•  Auto hyper-parameter tuning
•  adaptive job scheduling

Ø  Scalability
•  Scale out training job to hundreds of nodes

Ø  Portability
•  Support diverse accelerators like GPU/TPU/FPGA/RDMA
•  Immutable environment covers different frameworks, library, dependencies across

on promise and cloud

Training
At Scale

Data
Ingestion

Data
Analysis

Data
Transfor

m
-ation

Data
Validation

Building
a

Model

Model
Validation

Serving Logging Monitoring Roll-out

Data
Splitting

Trainer

* Thanks kubeflow community for the wonderful flow diagram

Kubeflow – Build portable machine
learning solutions using Kubernetes

●  Kubeflow’s goal is to make scaling machine learning models and deploying them to production as
simple as possible

https://github.com/kubeflow

kubernetes

ksonnet

TFJob-
Operator

Pytorch-
Operator

MPIJob-
operator

JupyterHub

TF-Serving

Caffe2-
Operator

Katib Argo MXNet-
Operator

Istio
integration

Seldon-
core Pipelines

●  It’s a K8s native platform for machine learning,
providing
○  K8s custom resources for managing tasks

(distributed training, orchestration, model
deployment etc...)

○  microservices for ML (data registries, model
databases, hyperparameter tuning, etc...)

○  ksonnect packages to manage K8s
infrastructure declaratively

Arena
Arena is open sourced by Alibaba Cloud container service team for accelerating deep
learning workloads running on Kubernetes cluster, and making data scientists' life easier.

https://github.com/kubeflow/arena

Kubernetes / Docker

Kubeflow

arena cli

Other backends CRD

Arena

Tensorflow, Caffe, PyTorch, MPI, Hovorod

CPU/GPU/FPGA Ethernet/RDMA Hadoop/OSS/CPFS

Flink, Spark

demo

Arena demo – Submit a distributed
training job

arena submit mpijob
 --name=myhvd \
 --workers=6 \
 --gpus=2 \
 --sshPort=33 \
 --syncMode=git \
 --syncSource=https://github.com/xxx/tensorflow-sample-code.git \
 --data=tfdata:/data_dir
 --env=num_batch=100 \
 --env=batch_size=80 \
 --image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/ali-perseus:gpu-tf-1.6.0 \
 "/root/hvd-distribute.sh 12 2”

worker0

worker1

worker2

worker3

worker4

worker5

Arena demo – check job status
check job list
arena list

NAME STATUS TRAINER AGE NODE
caffe-1080ti-1 RUNNING MPIJOB 3d 192.168.1.118
tf-dist-data SUCCEEDED TFJOB 3d N/A

check job deatils
arena get tf-dist-data

NAME STATUS TRAINER AGE INSTANCE NODE
tf-dist-data RUNNING tfjob 3d tf-dist-data-tfjob-ps-0 192.168.1.120
tf-dist-data SUCCEEDED tfjob 3d tf-dist-data-tfjob-worker-0 N/A
tf-dist-data SUCCEEDED tfjob 3d tf-dist-data-tfjob-worker-1 N/A

Your tensorboard will be available on:
192.168.1.117:32594

Arena demo – check job log

check real time log
arena logs tf-dist-data

2018-07-30T03:47:49.881380632Z 2018-07-30 03:47:49.881141: I tensorflow/core/platform/cpu_feature_guard.cc:
137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX
AVX2 FMA

check full log
arena logviewer tf-dist-data

Your LogViewer will be available on:
192.168.1.120:8080/tfjobs/ui/#/default/tf-dist-data-tfjob

Arena demo – check GPU status

arena top job style-transfer

INSTANCE NAME GPU(Device Index) GPU(Duty Cycle) GPU(Memory MiB) STATUS NODE
style-transfer-tfjob-ps-0 N/A N/A N/A Running 192.168.0.117
style-transfer-tfjob-worker-0 6 98% 15641.0MiB / 16276.2MiB Running 192.168.0.118
 7 96% 15481.0MiB / 16276.2MiB Running 192.168.0.118
style-transfer-tfjob-worker-1 3 98% 15641.0MiB / 16276.2MiB Running 192.168.0.195
 4 95% 15481.0MiB / 16276.2MiB Running 192.168.0.195

arena top node

NAME IPADDRESS ROLE GPU(Total) GPU(Allocated)
cn-shanghai.i-ufxxxxxxt76c4lm 192.168.168.124 worker 2 2
cn-shanghai.i-ufxxxxxxt76c4ln 192.168.168.123 worker 2 1
cn-shanghai.i-ufxxxxxxt76c4lo 192.168.168.125 worker 2 1
cn-shanghai.i-ufxxxxxxvggce0x 192.168.168.133 worker 2 2

Allocated/Total GPUs In Cluster:
6/8 (75%)

Arena demo – more commands

https://github.com/kubeflow/arena

Agenda

²  Challenges of running large scale deep learning
²  Container based solution on Alibaba cloud
²  Kubeflow and Arena
²  Key requirements in real life
²  User cases
²  Future works

Key requirements – GPU sharing

demo

•  Share NVIDIA GPUs among multiple containers to
increase utilization for model inference

•  The Challenge:
•  Schedule
-  Kubernetes current scheduler enforces exclusive GPU

assignment, can’t be shared
-  Device Plugin and Scheduler make decision independently

•  Isolation
-  MPS is only for Volta, and not production ready
-  NVIDIA Grid is only for the virtual machine now

•  Our solution will be open sourced soon

Scheduler

Kubelet

GPU Device Plugin

GPU0
(16276MiB)

GPU1
(16276MiB)

Node

 ReportDevices()

API Server

Allocate(ID list)

NVidia
Docker2

CreateContainer()

Advertise Node: gpu-mem:32552

2. Bind(node): Find GPU Device
1. Filter(nodes): Find GPU Nodes

 Pod:
 resources:
 limits:
 gpu-mem: 8138

NVIDIA_VISIBLE_DEVICES=0
GPU_MEMORY=16276
POD_GPU_MEMORY=8138

Key requirements – Gang scheduling

All or Nothing:
Only bind
nodes to a job
if all of its task
pods can be
allocated with
enough
resources

node0

GPU1

node1

GPU1

GPU0
(used)

GPU0
(used)

Job1 has 3 pods, each wants 1 GPU

Job2 has 1 pod, wants 1 GPU

kube-batchd
a gang schedulerarena

tf-operator

Kubernetes Cluster

kube-apiserver
1. Submit TFJob

2. ListWatch TFJob

3. CreatePdb

4. Create Pods

5. Watch and Schedule Pods

kind: TFJob
metadata:
 name: xxx
spec:
 schedulerName: kube-batchd

node cache

pdb cache queue cache

podset cache

1. Delete TFJob

GarbageCollector
Contoller

3. Delete Pods 2. Delete Pdb

DRF Algorithm

- - enable-gang-scheduler

Job1 pending, no pod
should get any GPU

Key requirements – GPU monitoring

Node level：
•  GPU duty cycle
•  GPU memory usage
•  GPU Temperature
•  Power usage
•  Total/allocated GPU

Pod level：
•  GPU duty cycle
•  GPU memory usage
•  Allocated GPU

Customer case 1 - weibo's Deep
Learning Training Platform

Sample Data weilearn framework Job Scheduling Model zoo

CTR Data

NLP data

Video/Image

Data pre-processing CTR

NLP CV

VGG Yolo

inception resnet GRU LSTM

Deep &
Wide

Deep
FM

Deep Cross Network
Spark Hyper

parameters

Resources

Algorithms

Config Arena +
Kubernetes

YARN

DNN

RNN

CNN

CTR

NLP

Image
Video

Speech

10 millions of feature, 1 billions of sample data

•  200+ GPU nodes cluster
•  Unified supports for Tensorflow, Horovod, Caffe
•  GPU monitoring and auto scaling
•  Real time training visualization and logging
•  Create cluster in 10 minutes, start deep learning job in 1 minute

+

1.0		

7.8		
12.5		

23.2		

40.1		

1	

7.6		

14.9		

29.6		

58.0		

0.0		

10.0		

20.0		

30.0		

40.0		

50.0		

60.0		

70.0		

1	 8	 16	 32	 64	

Sp
ee
du

p

P100	GPU	devices

Distributed	ResNet-50	performance

原始性能

优化性能

Customer case 2 – Accelerate
distributed training
•  Scenario

-  image classification
•  Dataset

-  Imangenet (ILSVRC2012, 1.28million images, 1K classes)
•  Model - ResNet-50
•  Resources

-  8xP100 GPU/node, 56 vCPU, 480GB, 25Gb eth
•  Framework – Perseus vs. Tensorflow
•  Performance optimization

-  MPI + ring-allreduce + FP16
-  Overlap communication and computation

•  Results
-  Use 64 GPU get 90% speed up
-  45% better than native TF

Future works

•  Training with serverless Kubernetes and spot instance
-  Cost effective
-  Don’t care about cluster

•  Model hub
-  Pre-trained models
-  Reproducible training workflows

•  Data/model management
-  Versioning and security

•  Comprehensive inference service
-  Framework agnostic
-  Built in support for A/B test, release policy, smart routing and auto scaling

Thank you!

 &

Questions?

https://github.com/kubeflow/arena Welcome to try and fix it !

GPU placement

Spreading
GPU node0

GPU1

GPU node1

GPU1

GPU0 GPU0

Binpack
GPU node0

GPU1

GPU node1

GPU1

GPU0 GPU0

Bundling
GPU node0

GPU1

GPU node1

GPU1

GPU0 GPU0

Job#1 need 2 GPUs Job#2 need 1 GPU

Sharing
GPU node0

GPU1 GPU0

*Job2 specify it must run
on GPU0-node1

