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How does data scientists run deep 
learning? 

• Optimization 
• Scaling 
• Tuning 

Update/
Scale out 

Debug 

Prepare 
data 

Build 
model  

Train 

Inference 

ü  End to end - Data in, executable out 
ü  Long time - hours/days/weeks 
ü  Iterative optimization - gradient 

descent, hyper parameters tuning 
ü  Massive data, massive 

computation 



Challenges of deep learning at scale   

1.  Heterogeneous computing resources management 
-  CPU, GPU, (X)PU, FPGA, RDMA 

2.  End to end support for deep learning experiments 
-  Prepare data -> build/train/evaluate model -> release model, and repeat !!! 

3.  Continuously train and serve models at large scale 
-  Cost effective scaling on demand 



Deep learning solution on Alibaba 
Cloud container service 
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How to accelerate deep learning 

Ø   Composability 
•  Composable workflow  
•  Continuous training pipelines 
•  Auto hyper-parameter tuning 
•  adaptive job scheduling 

Ø   Scalability 
•  Scale out training job to hundreds of nodes 

Ø   Portability 
•  Support diverse accelerators like GPU/TPU/FPGA/RDMA 
•  Immutable environment covers different frameworks, library, dependencies across 

on promise and cloud 
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* Thanks kubeflow community for the wonderful flow diagram  



Kubeflow – Build portable machine 
learning solutions using Kubernetes 

●  Kubeflow’s goal is to make scaling machine learning models and deploying them to production as 
simple as possible 

https://github.com/kubeflow 

kubernetes 

ksonnet 

TFJob-
Operator 

Pytorch-
Operator 

MPIJob-
operator 

JupyterHub 

TF-Serving 

Caffe2-
Operator 

Katib Argo MXNet-
Operator 

Istio 
integration 

Seldon-
core Pipelines 

●  It’s a K8s native platform for machine learning, 
providing 
○  K8s custom resources for managing  tasks 

(distributed training, orchestration, model 
deployment etc...) 

○  microservices for ML (data registries, model 
databases, hyperparameter tuning, etc...) 

○  ksonnect packages to manage K8s 
infrastructure declaratively 



Arena 
Arena is open sourced by Alibaba Cloud container service team for accelerating deep 
learning workloads running on Kubernetes cluster, and making data scientists' life easier. 
 

https://github.com/kubeflow/arena 

Kubernetes / Docker 

Kubeflow 

arena cli 

Other backends CRD 

Arena 

Tensorflow, Caffe, PyTorch, MPI, Hovorod 

CPU/GPU/FPGA Ethernet/RDMA Hadoop/OSS/CPFS 

Flink, Spark 

demo 



Arena demo – Submit a distributed 
training job 

arena submit mpijob 
 --name=myhvd \ 
 --workers=6 \ 
 --gpus=2 \  
 --sshPort=33 \ 
 --syncMode=git \  
 --syncSource=https://github.com/xxx/tensorflow-sample-code.git \ 
 --data=tfdata:/data_dir 
 --env=num_batch=100 \  
 --env=batch_size=80 \  
 --image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/ali-perseus:gpu-tf-1.6.0 \  
 "/root/hvd-distribute.sh 12 2”  

worker0 

worker1 

worker2 

worker3 

worker4 

worker5 



Arena demo – check job status 
# check job list 
arena list 
 
NAME               STATUS        TRAINER   AGE      NODE 
caffe-1080ti-1  RUNNING        MPIJOB     3d        192.168.1.118 
tf-dist-data       SUCCEEDED  TFJOB       3d         N/A 

# check job deatils 
arena get tf-dist-data 
 
NAME          STATUS       TRAINER  AGE  INSTANCE                      NODE 
tf-dist-data  RUNNING        tfjob       3d     tf-dist-data-tfjob-ps-0          192.168.1.120 
tf-dist-data  SUCCEEDED  tfjob       3d     tf-dist-data-tfjob-worker-0   N/A 
tf-dist-data  SUCCEEDED  tfjob      3d     tf-dist-data-tfjob-worker-1    N/A 
 
Your tensorboard will be available on: 
192.168.1.117:32594 



Arena demo – check job log 

# check real time log 
arena logs tf-dist-data 
 
2018-07-30T03:47:49.881380632Z 2018-07-30 03:47:49.881141: I tensorflow/core/platform/cpu_feature_guard.cc:
137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX 
AVX2 FMA 

# check full log 
arena logviewer tf-dist-data 
 
Your LogViewer will be available on: 
192.168.1.120:8080/tfjobs/ui/#/default/tf-dist-data-tfjob 



Arena demo – check GPU status 

arena top job style-transfer 
 
INSTANCE NAME                  GPU(Device Index)  GPU(Duty Cycle)  GPU(Memory MiB)             STATUS   NODE 
style-transfer-tfjob-ps-0           N/A                           N/A                       N/A                                      Running  192.168.0.117 
style-transfer-tfjob-worker-0    6                              98%                      15641.0MiB / 16276.2MiB   Running  192.168.0.118 
                                                7                              96%                      15481.0MiB / 16276.2MiB   Running  192.168.0.118 
style-transfer-tfjob-worker-1    3                              98%                      15641.0MiB / 16276.2MiB   Running  192.168.0.195 
                                                4                              95%                      15481.0MiB / 16276.2MiB   Running  192.168.0.195 

arena top node 
 
NAME                                                  IPADDRESS          ROLE       GPU(Total)  GPU(Allocated) 
cn-shanghai.i-ufxxxxxxt76c4lm            192.168.168.124  worker       2                2 
cn-shanghai.i-ufxxxxxxt76c4ln             192.168.168.123  worker       2                1 
cn-shanghai.i-ufxxxxxxt76c4lo             192.168.168.125  worker       2                1 
cn-shanghai.i-ufxxxxxxvggce0x            192.168.168.133  worker       2                2 
----------------------------------------------------------------------------------------- 
Allocated/Total GPUs In Cluster: 
6/8 (75%) 



Arena demo – more commands  

https://github.com/kubeflow/arena 
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Key requirements – GPU sharing 

demo 

•  Share NVIDIA GPUs among multiple containers to 
increase utilization for model inference 

•  The Challenge: 
•  Schedule 
-  Kubernetes current scheduler enforces exclusive GPU 

assignment, can’t be shared 
-  Device Plugin and Scheduler make decision independently 

•  Isolation 
-  MPS is only for Volta, and not production ready 
-  NVIDIA Grid is only for the virtual machine now 

•  Our solution will be open sourced soon 

 

Scheduler 
 

Kubelet 

GPU Device Plugin 
 

GPU0 
(16276MiB) 

GPU1 
(16276MiB) 

Node 

 ReportDevices()  

API Server 

Allocate(ID list) 

NVidia 
Docker2 

CreateContainer() 

Advertise Node: gpu-mem:32552 
                    

2. Bind(node):   Find GPU Device 
1. Filter(nodes): Find GPU Nodes 

 Pod: 
   resources:   
      limits: 
       gpu-mem: 8138 

NVIDIA_VISIBLE_DEVICES=0 
GPU_MEMORY=16276 
POD_GPU_MEMORY=8138 



Key requirements – Gang scheduling 

All or Nothing:  
Only bind 
nodes to a job 
if all of its task 
pods can be 
allocated with 
enough 
resources 

node0 

GPU1 

node1 

GPU1 

GPU0  
(used) 

GPU0 
(used) 

Job1 has 3 pods, each wants 1 GPU 

Job2 has 1 pod, wants 1 GPU 

kube-batchd
a gang schedulerarena

tf-operator

Kubernetes Cluster

kube-apiserver
1. Submit TFJob

2. ListWatch TFJob

3. CreatePdb

4. Create Pods

5. Watch and Schedule Pods

kind: TFJob
metadata:
  name: xxx
spec:
  schedulerName: kube-batchd

node cache

pdb cache queue cache

podset cache

1. Delete TFJob

GarbageCollector 
Contoller

3. Delete Pods 2. Delete Pdb

DRF Algorithm

- - enable-gang-scheduler

Job1 pending, no pod 
should get any GPU  



Key requirements – GPU monitoring 

Node level： 
•  GPU duty cycle 
•  GPU memory usage 
•  GPU Temperature 
•  Power usage 
•  Total/allocated GPU 

Pod level： 
•  GPU duty cycle 
•  GPU memory usage 
•  Allocated GPU 



Customer case 1 - weibo's Deep 
Learning Training Platform 

Sample Data weilearn framework Job Scheduling Model zoo 

CTR Data 

NLP data 

Video/Image 

Data pre-processing CTR 
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FM 
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Spark Hyper 

parameters 
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Config Arena + 
Kubernetes 

YARN 

DNN 

RNN 

CNN 

CTR 

NLP 

Image 
Video 

Speech 

10 millions of feature, 1 billions of sample data 

•  200+ GPU nodes cluster 
•  Unified supports for Tensorflow, Horovod, Caffe 
•  GPU monitoring and auto scaling 
•  Real time training visualization and logging 
•  Create cluster in 10 minutes, start deep learning job in 1 minute 

+ 
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Customer case 2 – Accelerate  
distributed training  
•  Scenario 

-  image classification 
•  Dataset 

-  Imangenet (ILSVRC2012, 1.28million images, 1K classes) 
•  Model - ResNet-50 
•  Resources 

-  8xP100 GPU/node, 56 vCPU, 480GB, 25Gb eth 
•  Framework – Perseus vs. Tensorflow 
•  Performance optimization 

-  MPI + ring-allreduce + FP16 
-  Overlap communication and computation 

•  Results 
-  Use 64 GPU get 90% speed up 
-  45% better than native TF 



Future works 

•  Training with serverless Kubernetes and spot instance 
-  Cost effective 
-  Don’t care about cluster  

•  Model hub 
-  Pre-trained models 
-  Reproducible training workflows 

•  Data/model management 
-  Versioning and security 

•  Comprehensive inference service 
-  Framework agnostic 
-  Built in support for A/B test, release policy, smart routing and auto scaling 



Thank you!
 
 &

Questions? 

https://github.com/kubeflow/arena Welcome to try and fix it !  





GPU placement 

Spreading 
GPU node0 

GPU1 
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GPU node0 

GPU1 
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Job#1 need 2 GPUs Job#2 need 1 GPU 

Sharing 
GPU node0 

GPU1 GPU0 

*Job2 specify it must run 
on GPU0-node1 


