
Three Pillars with Zero Answers
A New Observability Scorecard

December 11, 2018

Part I
A Critique

Observing microservices is hard

Google and Facebook solved this (right???)

They used Metrics, Logging, and Distributed Tracing…

So we should, too.

The Conventional Wisdom

The Three Pillars of Observability

- Metrics
- Logging
- Distributed Tracing

Metrics!

Logging!

Tracing!

Fatal Flaws

A word nobody knew in 2015…

Dimensions (aka “tags”) can explain variance
in timeseries data (aka “metrics”) …

… but cardinality

Logging Data Volume: a reality check

transaction rate

x all microservices

x cost of net+storage

x weeks of retention

way too much $$$$

The Life of Transaction Data: Dapper

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 000.10%

Flushed out of process App 000.10%

Centralized regionally Regional network + storage 000.10%

Centralized globally WAN + storage 000.01%

Logs Metrics Dist. Traces

TCO scales gracefully – ✓ ✓

Accounts for all data
(i.e., unsampled) ✓ ✓ –

Immune to cardinality ✓ – ✓

Fatal Flaws: A Review

Data vs UI

Data vs UI

Data vs UI

Metrics

Logs

Traces

Metrics, Logs, and Traces are
Just Data,

… not a feature or use case.

Part II
A New Scorecard
for Observability

Mental Model: Goals and Activities

Goals: how our services perform in the
eyes of their consumers

Activities: what we (as operators) actually
do to further our goals

“SLI” = “Service Level Indicator”

TL;DR: An SLI is an indicator of health that
a service’s consumers would care about.

… not an indicator of its inner workings

Quick Vocab Refresher: SLIs

Observability: Two Fundamental Goals

- Gradually improving an SLI
- Rapidly restoring an SLI

Reminder: “SLI” = “Service Level Indicator”

NOW!!!!

days, weeks, months…

1. Detection: measuring SLIs precisely

2. Refinement: reducing the search
space for plausible explanations

Observability: Two Fundamental Activities

An interlude about stats frequency

Specificity:
- Cost of cardinality ($ per tag value)
- Stack support (mobile/web platforms, managed services,

“black-box OSS infra” like Kafka/Cassandra)

Fidelity:
- Correct stats!!! (global p95, p99)
- High stats frequency (stats sampling frequency, in seconds)

Freshness: (lag from real-time, in seconds)

Scorecard: Detection

of things your users
actually care about

of microservices

of failure modes

Must reduce
the search space!

Why “Refinement”?

The Refinement Process

Discover Variance

Explain Variance

Deploy
Fix

Histograms vs “p99”

Scorecard: Refinement

Identifying Variance:
- Cardinality ($ per tag value)
- Robust stats (histograms (see prev slide))
- Retention horizons for plausible queries (time duration)

Explaining variance:
- Correct stats!!! (global p95, p99)
- “Suppress the messengers” of microservice failures

Wrapping up…

(first, a hint at my perspective)

The Life of Trace Data: Dapper

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 000.10%

Flushed out of process App 000.10%

Centralized regionally Regional network + storage 000.10%

Centralized globally WAN + storage 000.01%

(Review)

The Life of Trace Data: Dapper Other Approaches

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 100.00%

Flushed out of process App 100.00%

Centralized regionally Regional network + storage 100.00%

Centralized globally WAN + storage on-demand

Refinement
- Identifying variance:

cardinality cost, correct
stats, hi-fi histograms,
retention horizons

- “Suppress the messengers”

Detection
- Specificity: cardinality

cost, stack coverage
- Fidelity: correct stats,

high stats frequency
- Freshness: ≤ 5 seconds

An Observability Scorecard

Thank you!

Ben Sigelman, Co-founder and CEO
twitter: @el_bhs

email: bhs@lightstep.com

Extra slides

Ideal Measurement: Robust

Ideal Measurement: High-Dimensional

Ideal Refinement: Real-time

Must be able to test and eliminate hypotheses quickly

- Actual data must be ≤10s fresh

- UI / API latency must be very low

Ideal Refinement: Global

Ideal Refinement: Context-Rich

We can’t expect humans to know what’s normal

Thank you / Q&A

