& N

KubeCon CloudNativeCon
North America 2018

Running Serverless F
Workloads on Top of Kubernetes
and Jupyter Notebooks

Chrlstopher Woods, UnlverS|ty of Brlstol UK

-% University of
B BRISTOL

https://chryswoods.com/talks

https://chryswoods.com/talks

Research at the Cutting Edge abecon | cloudativecon

North America 2018

/

LS
P v L - . ;, n.‘ ‘
o ‘(hﬁ‘h \ 1z r\:} > ¢

l‘ .

HIV Protease

HIV Reverse Transcriptase

Increasing size and
complexity of
simulations

ADDomer pseudo-virus
immuno-promoter

High Performance Computing abecon | cloudativecon

North America 2018

[chzcjw@newbluel ~]$ cd Simulat

newbluel Simulation]$ qsub -q gpu -1 walltime=15)0:00,nodes=1:ppn= 2 ./ 1. SSH to Iogln nOde
newbluel Simulation]$ o I

STATE PROCS REMAINING

Running | 159:49 e 4 09:53: .

Running 149 4 ¢

Rmmng‘ 1) 09:53: 2' Upload InpUt (rSynC)
Running 1 149 e / :53:3

Running 1 e 14 —
Running | 11:59:49 ed Nov 09:53:

Running

Runni k Mon

Runni

3. Submit job to Q

. .)
. ’
. -
L »

6. Analyse results

GWait inE GWait for j@

5. Download output (rsync)

MIn |

In [

In |

Interactive molecular dynamics

BioSimSpace is a great tool for playing around with molecular simulations directly and interacting with them in real-time. In this notebook you'll learn how to
use BioSimSpace to set up and run an equilibration protocol, then query the running process for information, plot graphs of the latest data, visualise molecular
configurations, and analyse trajectory data.

Before we get started, let's import BioSimSpace so that it's available inside of our notebook.

import BioSimSpace as BSS I

Creating a molecular system

First of all we need to load a molecular system.

system = BSS.I0.readMolecules(["amber/ala/ala.crd", "amber/ala/ala.top"])
We have now created a molecular system. The system consists of an alanine dipeptide molecule in a box of water. To show the number of molecules in the

system, run:

system.nMolecules()

Defining a simulation protocol

BioSimSpace provides functionality for defining various simulation protocols. In this notebook we will construct a typical simulation workflow that uses a
sequence of simple protocols, with the output of one forming the input of the next:

Minimisation: Energy minimisation the molecular system.

Equilibration: Equilibration of the system to a target temperature.

Production: Regular molecular dynamics, run at fixed temperature.

Custom: A user defined protocol, e.g. a config file for a molecular dynamics package.

Ao

When defining a protocol we are configuring the type of simulation that we wish to run, as well as any options for the particular simulation. For example, to
create a default equilibration protocol:

protocol = BSS.Protcol.Equilibration()

This defines a 0.2 nanosecond equilibration protocol at a temperature of 300 Kelvin. For convenience, let's reduce the runtime. We'll also perform a heating
protocol and will restrain the position of atoms in the backbone.

Jupyter Notebook 4
u py er O e OO S KubeCon | CloudNativeCon
North America 2018
— Jupyter interactive_md (ead only) @ Logout | ControlPanel
® Py

« Jupyter notebook combines the;
 description of the experiment
« code to run the experiment
« code to analyse the results
« graphs and 3D visualisations of the
S results
= | . * conclusions of the experiment

* They contain everything
needed to describe and
reproduce the experiment

https://jupyter.org — https://biosimspace.orq

https://jupyter.org/
https://biosimspace.org/

Notebooks are interactive papers . mec

North America 2018

d A" compute and data SitS in the CIOUd. : JUpyter 01_running_ligandswap (autosaved) P Logout = Control Panel
Only the infOrmation needed tO render File Edit View Insert Cell Kernel Widgets Help Not Trusted |Python3 (e}
the data in the notebook is transmitted t|[x]@[m][+]¥][nrn[m]c]|fdw ¢

over the network

* Hugely useful for open
and reproducible science

 Notebooks are, in effect,
interactive scientific

Public Internet

< > E

E

papers © I ;

...but where is the compute to run them? Home E
How can anyone reproduce the results if (Bristol)

they don’t have a local HPC machine?

~ Kubernetes and JupyterHub 2| N

North America 2018

) kubernetes

* JupyterHub running on k8s
« Easy to use helm chart!
« Great community and

Jup.yterhub instructions
N’ « Works with lots (all?)

Authenticate cloud kubernetes services,
User or roll-your-own clusters

*docker

— Jupyter
Google Kubernetes Engine

@
Jupyter
Server
Microsoft Azure Kubernetes Service

Oracle Cloud Infrastructure Container Engine for Kubernetes

_

https://zero-to-jupyterhub.readthedocs.io/en/stable/

https://zero-to-jupyterhub.readthedocs.io/en/stable/

Simulations as Serverless Functions . E

North America 2018

We now have everything that is needed to create a process object. To do so, run:

In [5]: process = BSS.MD.run(system, protocol)

In [6]: process.isRunning()

Out[6]: True

* The above line starts and runs a molecular dynamics simulation
* However, we cannot run this in the k8s pod, as the hardware is too tiny...

 (...or else the k8s cluster would be too expensive)
 Instead we burst out to HPC hardware using a “serverless” function service

MD.run(system, protocol) % f

Fn service running on 52-core HPC nodes

.ku bernetes
_ Jupyter

Auto-scaling 1 or 2 core VMs

N

£
L Fn Serverless : https://fnproject.io e Em

North America 2018

Fn is an event-driven, open source, Functions-as-a-Service (FaaS) compute platform that you can run anywhere.

HTTP/1.1 200 OK

Content-Type: application/json

Fn-Call-Id: 01CW9TB7M1NG8G00GZJ00001JT
Date: Wed, 14 Nov 2018 19:14:40 GMT

https://acquire-aaai.com:8080/t/my-function
Content-Length: 1495

P
RE

T
ST

POST
RESPONSE

Code to run the function is wrapped into a docker container. This is allocated to hardware in response to a trigger
(e.g. https). Input data is encoded via POST and piped in as STDIN to the container. This is processed by the
function, with resulting STDOUT returned as a HTTP response

https://fnproject.io/
https://github.com/fnproject/docs/blob/master/fn/general/introduction.md

N

Fn Serverless : https://fnproject.io o Em

North America 2018

Function is ANY code (and associated software) that can be packaged into a
docker container

HTTP request is piped in as standard input

Anything written to standard output is returned as the HT TP response
Anything written to standard error is logged

Functions can be synchronous (respond immediately) or asynchronous

Asynchronous functions return a CALL _ID that can be queried to get progress,
cancel function or collect output, thereby supporting long-running functions

Supports ANY language! Development kits for Go, Python, Java, Ruby,
Node, and Rust simplify function writing and automate creation of docker
containers

https://fnproject.io/

Fn Serverless : https://fnproject.io

8 N
KubeCon CloudNativeCon

North America 2018

Fn FDKs make it easy to write functions that use JSON as the input/output format, and that can “stay hot”

https://acquire-aaai.com:8080/t/my-function

POST
REQUEST
name hris”

{"name”:
"chris”™}

import fdk
import json

async def handler(ctx, data=None):
name = "World"
if data and len(data) > O0:
body = json.loads(data)
name = body.get("name")
return "Hello {0}".format (name)

if name == " main_ ":
fdk.handle(handler)

Python function wrapped via Fn
Python Devkit (FDK) handling
JSON input and writing JSON

output

“Hello Chris”

POST
RESPONSE

“Hello Chris”

https://fnproject.io/

In

In

In

[

[

[

]

]

]

]

]

]

£
wy

Simulations as Fn Functions

import BioSimSpace as BSS
system = BSS.IO.readMolecules(["amber/ala/ala.crd"”", "amber/ala/ala.top”])

Initialise a short equilibration protocol.

protocol = BSS.Protocol.Equilibration(runtime=0.05*BSS.Units.Time.nanosecond,
temperature_ start=0+*BSS.Units.Temperature.kelvin,
temperature_end=300*BSS.Units.Temperature.kelvin,
restrain_backbone=True)

process = BSS.MD.run(system, protocol)

Generate a plot of time vs temperature.
plotl = BSS.Notebook.plot(process.getTime(time_ series=True),
process.getTemperature(time series=True))

Generate a plot of time vs energy.

plot2 = BSS.Notebook.plot(process.getTime(time_ series=True),
process.getTotalEnergy(time series=True))

view = BSS.Notebook.View(process)
view.system()

3 kubernetes

© Jupyter

Auto-scaling 1 or 2 core VMs

North America 2018

Fn service running on 52-core HPC nodes

In [1]:
In [2]:
In [3]:

In [4]:

In [J:

Simulations as Fn Functions

import BioSimSpace as BSS
system = BSS.IO.readMolecules(["amber/ala/ala.crd"”, "amber/ala/ala.top"])

Initialise a short equilibration protocol.
protocol = BSS.Protocol.Equilibration(runtime=0.05*BSS.Units.Time.nanosecond,
temperature_ start=0+*BSS.Units.Temperature.kelvin,
ce mmis in

bammarabnea And=3100sD o Mammasaboea balod

process = BSS.MD.run|(system, protocol]|

Generate a plot of time vs energy.
plot2 = BSS.Notebook.plot(process.getTime(time_ series=True),
process.getTotalEnergy(time series=True))

view = BSS.Notebook.View(process)
view.system()

.ku bernetes
_ Jupyter

Auto-scaling 1 or 2 core VMs

async call

——>

MD.run(...)

6| ©

KubeCon CloudNativeCon
North America 2018

Fn service running on 52-core HPC nodes

In [1]): import BioSimSpace as BSS

Simulations as Fn Functions o E

North America 2018

In [2]): system = BSS.IO.readMolecules(["amber/ala/ala.crd"”", "amber/ala/ala.top"]) fu nC. py
Gromacs

In [3): # Initialise a short equilibration protocol.
protocol = BSS.Protocol.Equilibration(runtime=0.05*BSS.Units.Time.nanosecond, Ei2
temperature_start=0+*BSS.Units.Temperature.kelvin, fa St \ %
M PAYE vavY (Y VLT U G U Sy ST R M D i \ioe
async call un flexible Y.
I free g

In [4]): process = BSS.MD.run(system, protocol]|

cker

¢
MD.run(...) GROMACS

Generate a plot of time vs energy.
plot2 = BSS.Notebook.plot(process.getTime(time_ series=True)
process. getTota 1Energy(time_series=True)) ' MOIeCUIa r
™, Dynamics (MD)
sys ()

.ku bernetes
: jupyter

2fn

Auto-scaling 1 or 2 core VMs Fn service running on 52-core HPC nodes

Serverless + Object Store ©

In [1]): import BioSimSpace as BSS

In [2]): system = BSS.IO.readMolecules(["amber/ala/ala.crd",

In [3): # Initialise a short equilibration protocol.

protocol = BSS.Protocol.Equilibration(runtime=0.05*BSS.Units.Time.nanoseco!
temperature_start=0+*BSS.Units.Temperature.kelvin,
bammarakinra AndeINN+DOC IMTnike Mammaraboaea baload

"amber/ala/ala.top"])

nd,

6| S

KubeCon CloudNativeCon
North America 2018

async call

In [4]): process = BSS.MD.run(system, protocol)|

——>

Generate a plot of time vs energy.
plot2 = BSS.Notebook.plot(process.getTime(time_ ser.
process.getTotalEnergy(time series=True))

In []: view = BSS.Notebook.View(process)
view.system()

kubernetes
— Jupyter

ies=True),

Auto-scaling 1 or 2 core VMs

MD.run(bucket)

func.py

Gonr

INPUT DATA

Gromacs
fast ‘i*i
flexible Jg&.,
free ““¥H
.
GROMACS
Molecular
Dynamics (MD)

cker

Object Store

2fn

Fn service running
on 52-core HPC nodes

Serverless + Object Store ©

In [1]): import BioSimSpace as BSS
In [2]): system = BSS.IO.readMolecules(["amber/ala/ala.crd", "amber/ala/ala.top"])

In [3): # Initialise a short equilibration protocol.
protocol = BSS.Protocol.Equilibration(runtime=0.05*BSS.Units.Time.nanosecond,
temperature_start=0+*BSS.Units.Temperature.kelvin,
bammarabnra And=2ANsDO0 Mnike Mammasabnea balod

In [4]: process = BSS.MD.run(system, protocol]|

Generate a plot of time vs energy.
plot2 = BSS.Notebook.plot(process.getTime(time_ series=True),
process.getTotalEnergy(time series=True))

In []: view = BSS.Notebook.View(process)
view.system()

kubernetes
— Jupyter

Auto-scaling 1 or 2 core VMs

Object Store

6| S

KubeCon CloudNativeCon
North America 2018

func.py

Gonr

INPUT DATA
OUTPUT DATA

Gromacs

fast \\

!
ikt Z8

flexible j&
free 58

0
¥
GROMACS
Molecular

cker

Dynamics (MD)

Stream output
to object store

2fn

Fn service running
on 52-core HPC nodes

Serverless + Object Store © < | M

KubeCon CloudNativeCon
North America 2018

Sy

func.py Gromacs

E 80 fast ix‘i;
_ , Run MD flexible Y.,
) Live analysis by free ““g8

querying data as it

\ cker
0.000 0001 0002 o_i_o'os 0.004 0005 0006 0.007 arriveS in the ObjeCt INPUT DATA GROMACS
o OUTPUT DATA Molecular

Dynamics (MD)

2fn

Fn service running
on 52-core HPC nodes

Stream output
to object store

kubernetes
— Jupyter

Object Store

Auto-scaling 1 or 2 core VMs

Simulations as Fn Functions o mec

North America 2018

Different “molecular dynamics” Fn function calls can be associated with different
hardware

« Enables high memory, big CPU or GPU nodes to be allocated on demand in
response to function calls

The Fn framework is open source and cross-platform, so can work on any cloud
Works with any application that can be packaged into a docker container

Object Store used as intermediary to keep messages small. Benefit is output data
can be assigned a unique URL / DOI and immediately published

Simple framework that allows ANYONE to run HPC simulations by calling the
Fn function via a public URL

Anyone can run simulations...! b mm

North America 2018

« Simple framework that allows ANYONE to run HPC simulations by calling
the Fn function via a public URL!

That could get expensive...!

Looks like we need some user
authentication, access control
and accounting...

Authorisation (Identity)

In

In

In

In

In

In

In

In

In

[1: from Acquire.Client import User I
[]: user = User("chryswoods")

[]: (url,grcode) = user.request_login()

[1: grcode

[]: from IPython.core.display import HTML
print(url)
HTML("Login here" % url)

[]: user.wait_for_ login()
[]: user.is_logged in()

[1: user.logout()

6|

KubeCon | CloudNativeCon
North America 2018

Built an authorisation (identity) service
on top of Fn serverless and object store
for state

“request_login” call from the notebook
calls “request_login” serverless function.
This looks up user details from object
store and returns a unique login URL

Login page also served as html from an
Fn function

Notebook can wait for the login to
complete, and uses security tokens to
authenticate with simulation function
service

Authorisation, Access, Accounting . E

North America 2018

kubernetes

5. Run simulation

4. Upload data

Notebooks (console+GUI)

2. Find user 3. Pay for Simulation (HPC)
storage and compute and
available storage

simulations

Distributed
Obicct St application —
. : Ject Store each part could
Access (service discovery) Accounting (billing) (user storage) be running in

different clouds!

Serverless solves everything? v | ciimndll

North America 2018

-

Modified from https://www.flickr.com/photos/-marlith-/2634898429

Cold Start is REALLY painful!

tl = datetime.datetime.now()

response = Acquire.Service.call function(function_url)

t2 = datetime.datetime.now()

print("Call took {0} s".format((t2-tl).total seconds()))

Call took 4.087868 s
tl = datetime.datetime.now()
response = Acquire.Service.call function(function url)

t2 = datetime.datetime.now()
print("Call took {0} s".format((t2-tl).total seconds()))

Call took 0.092248 s

In 4087ms | expect my HPC code to perform ~40B
floating point calculations and simulate ~5000
steps of protein dynamics!

Spending >4s just to call a single
function is embarrassing!

| S

KubeCon CloudNativeCon
North America 2018

Cold Start is REALLY painful! b

tl = datetime.datetime.now()

response = Acquire.Service.call function(function_url)

t2 = datetime.datetime.now()

print("Call took {0} s".format((t2-tl).total seconds()))

Call took 4.087868 s
tl = datetime.datetime.now()
response = Acquire.Service.call function(function url)

t2 = datetime.datetime.now()
print("Call took {0} s".format((t2-tl).total seconds()))

Call took 0.092248 s

In 4087ms | expect my HPC code to perform ~40B
floating point calculations and simulate ~5000
steps of protein dynamics!

Spending >4s just to call a single
function is embarrassing!

X

CloudNativeCon
North America 2018

« Cold-start of a function is SLOW

« Container has to be allocated
Python interpreter needs to start
Modules must be imported
Script must run
State must be reloaded if needed

* Once called, the function is left
running so it is ready to process
the next request (it is hot)

« Someone has to pay the cost of
“heating” the function

Packaging sub-functions into apps s

https://acqui.red:8080/t/route

functio
Name

{“function”:”hello”,
“name”:”chris”}

import fdk
import json

async def hello(args):
name = “World”
if “name” in args:
name = args[“name”]
return “Hello {0}”.format (name)

async def handler(ctx, data=None):
if data and len(data) > O0:
body = json.loads(data)
func = body[“function”]
if func == “hello”:
return hello(body)
elif func == “goodbye”:
return goodbye (body)

return “UNHANDLED FUNCTION"

if name " main ":
fdk.handle(handler)

s B

CloudNativeCon
North America 2018

“Hello Chris”

POST
RESPONSE

“Hello Chris”

Packaging sub-functions into apps s

https://acquire-aaai.com:8080/t/identity/route

{*function” : “request_login”,
"username” : “chryswoods’,
“public_key” : “XXXXXXXX?,
“public_certificate” : “XXXXX"}

route.py

get keys
get_status
login
logout
register
request_login
setup
root
warm
whois

r

X

CloudNativeCon
North America 2018

https://acquire-
aaai.com/t/identity/s?id=19b187fc

{*session_uid” : “XXXXXX”,
"login_url” : “https://acquire-
aaai.com:8080/t/identity/s?id=19b187fc”,
“user_uid” : “XXXXXXXX"}

Packaging sub-functions into apps . mec

North America 2018

« Packaging all “sub-functions” into a single “function” that represents the application has
many advantages:

 Once one of the sub-functions is hot, all sub-functions are hot

 As all sub-functions are in the same docker container, pulling this single container to a node
gives it access to all sub-functions

« Async functions allow a single threads to handle multiple different sub-function calls at
the same time

* You can cache state between sub-function calls, e.g. security IAM credentials used to access
the object store, or reading rarely-changing data from object store (make use of Python
cachetools and @cached decorator)

« Same security (data leaking) issues as keeping the interpreter hot, i.e. you
must trust all code. Don’t execute arbitrary (user-supplied) code!!!

Profile to minimise startup time b E

North America 2018

« Choose a language and runtime that start
quickly, e.g. like Python

calculon 18:43:03 ~
:-> time python -c "import json”

real Om@.061s
user Om@.023s
SYS Om@.033s

Profile to minimise startup time b E

North America 2018

« Choose a language and runtime that start
calculon 18:50:22 ~ . .
:—> PYTHONPROFILEIMPORTTIME=1 python -c "import oci" 2> profile.txt quickly, e.g. like Python

calculon 18:50:25 ~ * Profile your imports so that you can
:-> tuna profile.txt . .
identify bottlenecks

main

1.667 s (100.0%)

fole] site
1.425 s (85.4%) 0.200 s (12.0%)s

oci.audit oci.core .identdatabect_gi_baine gal.qcertlip
0.812 s (48.7%) 0.242s (14.5%) 3s(47s (X s (3s (s (s

oci.audit.audit_client bre.blockstorage_d Ify.ideng.datdernz -
0.804 s (48.2%) 0.214s (12.8%) }ill1s (4bs (s (s (Is I :

oci._vendor oci.core.models tity. (b silan
0.707 s (42.4%) 0.207 s (12.4%) ' s (WP s (|
bci._vendor.requestsi._vendor.httpsig_d_vendorindorjdor.(III z
0.242s (14.5%) | 0.225s (13.5%) P6s (6.2s (D s (’|| I |||\ ; 3 ” ;

Profile to minimise startup time b Eﬂ

North America 2018

« Choose a language and runtime that start
calculon 18:50:22 ~ . .
:-> PYTHONPROFILEIMPORTTIME=1 python -c "import oci" 2> profile.txt quickly, e.g. like Python

calculon 18:50:25 ~ * Profile your imports so that you can
:-> tuna profile.txt . .
identify bottlenecks

main
0.070's (100.0%)

oci site

0.037s (52.1%) 0.024 s (34.4%) . . -
import lazy_import as _lazy_import

lazy_import : importlib.util
0.029 s (41.5%) : 0.014 s (19.5%)

audit = _lazy_import.lazy_module("oci.audit")

container_engine = _lazy_import.lazy_module("oci.container_engine")
core = _lazy_import.lazy_module("oci.core")

database = _lazy_import.lazy_module("oci.database")

logging i contextlib

0.015 s (21.4%) L 6% 0.010's (13.5%) dns = _lazy_import.lazy_module("oci.dns")

email = _lazy_import.lazy_module("oci.email")

file_storage = _lazy_import.lazy_module("oci.file_storage")
identity = _lazy_import.lazy_module("oci.identity")
key_management = _lazy_import.lazy_module("oci.key_management")
load_balancer = _lazy_import.lazy_module("oci.load_balancer™)

traceback S collections
0.008 s (11.6%) S D.008 s (10.8%s

linecache 3 ol I!{
).007 s (10.6% ; b L ||
|

One hot

spare

https://acquire-aaai.com:8080/t/identity/route

{“function” : “request_login”,
"username” : “chryswoods”,
“public_key” : “XXXXXXXX”,
“public_certificate” : “XXXXX"}

route.py

aet_keys
qget_status
login
logout
register
request_loain
setup
root
warm
whois

route.py

aet_keys
qet_status
login
logout
register
request_login
setup
root
warm
whois

e T
https://acquire-
aaai.com/t/identity/s?id=19b187fc

{“session_uid” : “XXXXXX”,
"login_url” : “nttps://acquire-

aaai.com:8080/t/identity/s?id=19b187fc”,

“user_uid” : “XXXXXXXX"}

async
call

6| S

KubeCon | CloudNativeCon
North America 2018

Just like in the hardware world, make sure
you always have “one hot spare”

Keep one instance of your “route.py” sub-
function bundle permanently hot

« (OK, not really serverless, but it's lightly
using 1 core, which is pennies per hour...
And practicality should always beat
idealism)

Have route issue an async (non-blocking)
function call to “warm”. This does nothing
except schedule a spare copy of route to
be pre-warmed ready for other users

Bundling subfuncs into route means that
only one hot spare is needed for the app

The Planetary Supercomputer

Functions == Processes Notebooks == Console/GUI

Object Store == Disk/Memory Storage
AAAIl == User accounts and resource scheduler

r

X

CloudNativeCon
North America 2018

Building a service that allows on-demand
running of HPC workloads from within
interactive Jupyter notebooks with a full
user Authentication, Access control and
financial Accounting Infrastructure (AAAI)

Fn is an excellent function / serverless
platform. Open source ©

Fully portable — works across clouds!

Notebooks + Serverless + Object Store
equals programming the planetary
supercomputer

Or, as my students call it, building the
Netflix of Simulation

£
The Planetary Supercomputer e |

North America 2018

from Acquire.Client import User I In []: from Acquire.Client import User I In []: from Acquire.Client import User I
user = User("chryswoods", identity url="http://identity-gcp.acquire-aaai.com:8080/t/identi In []: user = User("chryswoods", identity url="http://identity-azure.acquire-aaai.com:8080/t/iden In []: user = User("chryswoods", identity url="http://identity.acquire-aaai.com:8080/t/identity")
(url,qrcode) = user.request_login() In []: (url,grcode) = user.request_login() In []: (url,grcode) = user.request_login()
qrcode In []: qrcode In []: grcode
from IPython.core.display import HTML In []: from IPython.core.display import HTML In []: from IPython.core.display import HTML
print(url) print(url) print(url)
HTML("Login here" % url) HTML("Login here" % url) HTML("Login here" % url)
user.wait_for_login() In []: user.wait_for_login() In []: user.wait_for_login()
user.is_logged_in() In []: user.is_logged_in() In []: user.is_logged_in()
user.logout () In []: user.logout() In []: user.logout()

In [] In []

In [) in [1

Fn running on OCI

Fn running Fn running on Azure NG
in Germany

on GCP in Japan in the Netherlands

Notebooks running in Seattle OCI Object Store in Germany

Acknowledgements AP

North America 2018

My Research Software Engineering (RSE) Group
Andrew Williams, Chris Edsall, Lester Hedges, Matt Williams

BioSimSpace Research Team
Julien Michel, Antonia Mey, Adrian Mulholland, Charlie Laughton, Francesco Gervasio

EPSRC for funding (EP/N018591/1 and EP/P022138/1)

Oracle for providing a lot of compute time and extremely valuable discussions with cloud engineers and
the Fn development team. Special thanks to Phil Bates and Gerardo Viedma

Microsoft and Google for providing cloud time to demonstrate the portability of the system

The countless open source developers behind Fn, Jupyter, Kubernetes, Docker, Gromacs, Linux etc. who
all contribute their code to a common pool so that we can all build a better world together

https://chryswoods.com/talks

https://chryswoods.com/talks

CloudNativeCon

North America 2018

KubeCon

