
Reaching 5 Million
Messaging Connections:
Our Journey with Kubernetes

Dylan O’Mahony - Cloud Architecture Manager, Bose
Dave Doyle - Software Engineering Manager, Connected

Dec 12, 2018

So near, yet so far

Cloud

Home

So near, yet so far

Cloud

Home

So near, yet so far

Cloud

Home

So near, yet so far

Cloud

Home

© Notting Hill

Where I’m coming from.

The Team

Four people.
Two teams.
Makers and breakers. 

The Stack

Infrastructure: “Galapagos”

• Kubernetes on AWS (not EKS)

• Each team member had a full rollout of the stack

Solution Model

WebSocket Connection

MQTT
MQTT

MQTT

Solution Components

Ingress & Load Balancing: HAProxy

• De facto standard for proxy and load balancing

• TCP for WebSockets

• Less confusing than most ingress options

http://www.haproxy.org/

Message Broker: VerneMQ

• Clustering

• Bridging (future considerations)

• MQTTv5 shared subscriptions

• Fault tolerance

• Well-defined netsplit behaviour

• Time order integrity

https://vernemq.com/

The Glue: Listening Service

• Written in Golang

• Subscribes to VerneMQ with a shared subscription

• Writes shadow states to Cassandra

• Lightweight and performant

Shadow Store: Cassandra

• Performant

• Fault tolerant

• Massively scalable

• Stable

https://cassandra.apache.org/

Setup: Kubernetes

• All images built on Alpine

• StatefulSet: VerneMQ, Cassandra

• DaemonSet: HAProxy (ingress nodes)

• Deployment: Listening Service, Prometheus, Grafana

Solution Components

Test Rig: Locust

• Explored MZBench and JMeter

• Wanted more flexibility

• Decided on Locust

https://locust.io/

High-Level Architecture

Cass

Cass

Cass

Cass

Cass

Cass

Cass

Cass

Cass

LS

LS

LS

LS

LS

LS

VMQ

VMQ

VMQ

VMQ

VMQ

VMQ
VMQ

VMQ

VMQ

HAProxy

HAProxy

HAProxy

HAProxy

HAProxy

HAProxy

HAProxy

HAProxy

HAProxy

EC2EC2

EC2EC2

EC2EC2

Master

Testing

Target

5,000,000
Persistent
Concurrent
Connections

Result

340 Connections
Blocker: Python File Descriptor limits

• Paho MQTT client

• Python and select()

• Python has max 1024 file descriptors open
when using select()

Workaround

• Replaced select() call

• Tried async_io library

• Did not work

% make python

Result

700k Connections
Blocker: Configuration defaults and NAT

• HAProxy port exhaustion

• VerneMQ default connection config limits

• Service abstraction NAT

Workaround

Reconfigure Everything

• VerneMQ: fix max connection setting, add 3 more listeners

• Bypass Kubernetes Service

• HAProxy

• round-robin VerneMQ nodes

• increase source ports

• vertically scale ingress nodes for more iops/bandwidth

• Created app to query Kubernetes API, returned templated config

Service Mesh?

Result

1.1 Million
Connections
• Subscriptions were failing
• VerneMQ nodes were being

terminated
• Kubernetes brought them back up

Blocker: ?

Diagnosing the Problem

• Scaled VerneMQ incrementally from 10 to 80 nodes

• Conclusion: resize/reallocation issue

Workaround

Exponential Backoff

• Modified clients to add custom behavior

• Delayed subscriptions to begin at decaying
rate

• VerneMQ recovered

Result

1.5 Million Connections
Blocker: Resources - Erlang/OTP Scheduler

• Erlang schedulers went to 100% utilization

• Increasing resources didn’t help

Workaround

Reconfigure due to cgroups

• Erlang/OTP is not cgroup-aware

• Directly configure vCPUs in Erlang for the scheduler

Result

4.85 Million
Connections
Blocker:

Resources
Resources
Resources

Active WebSocket Connections

5,000,001

Average latency for published message to reach subscriber

69 ms

9,779
Average throughput of publishes per second

Success!

Key Learnings

1. Mind your dependencies

2. Experiment with resource limits

3. Layers complicate troubleshooting

4. Starting at scale is different than organic growth

5. Our solution was a lot cheaper

Cost per device per annum

Conclusion

Thank you.

Dec 12, 2018

@bose 
@connectedio

Credits

Peter Chow-Wah 
Software Engineer, Connected

Scott Wallace 
Software Engineer, Connected

Eric Ko 
Software Engineer, Connected

Thomas Aston 
Lead Project Manager, Connected

Cameron Rowshanbin 
Software Engineer, Connected

Kitty Chio 
Project Manager, Connected

Josh West 
Principal Cloud Engineer 
& Team Lead, Bose

Myles Steinhauser 
Senior Cloud Engineer, Bose

Yiwei Chen 
Cloud Engineer, Bose

Kevin Bralten 
Solutions Engineer, Connected

Special Thanks

@bose @connectedio

