Monolith to Microservice: pitchforks not included

Learn how GitLab turned it's omnibus into cloud native Helm charts by way of containerization
and orchestration. This talk aims to help practitioners already running large scale, successful
products make decisions on how to move to microservices while maintaining product
development cadence and serving customers on legacy software everyday. It’s like driving a
race car and fixing it as you are competing in a race, without pit stops.

We will cover:
e How we made the application stack capable of scaling via containerization, through many
changes to stateful behaviors.
e Why we made the changes from an architectural view.
e How on earth we accrued the technical debts we had to fix in the first place.
e Most importantly, we'll demonstrate why the monolith concept was the right place to start,
but Kubernetes is our future.

@warheadsse @gitlab

\/ GitLab Monolith to Microservice:

Pitchforks not included

about.gitlab.com

https://about.gitlab.com

) 4

$ whoami

Jason Plum
Senior Distribution Engineer

@WarheadsSE
gitlab.com/warheadsse
linkedin.com/in/jplum

@warheadsse @gitlab

Develop and maintain install methods
o Omnibus GitLab
o GitLab Helm charts

History in containerization

o Pushing Docker forward since 2013
o Dockeron ARM

o Does anyone know what '-bip' does?

More than 1 year building one of the
most complex Helm charts available

https://about.gitlab.com/install/
https://github.com/moby/moby/issues?utf8=%E2%9C%93&q=mentions%3AWarheadsSE+
https://github.com/moby/moby/pull/3178

@warheadsse @gitlab

\/ Reality of GitLab as a complete solution
Evolution of a Monolith
Outgrowing tradition
Overview o Scaling
o Sharding
— New approaches

o Gitaly
o Containerization

TL;DR: Here’s the gist, but you’ll miss the rest. o Object storage
Understanding new challenges
o Requirements
o Scaling
o Resilience

@warheadsse @gitlab

v

What is GitLab?

]

Manage

Since 2016
GitLab added:

Cycle Analytics
DevOps Score

Audit
Management

Authentication
and
Autherization

Coming soon:
Code Analytics

Workflow

Policies

What is GitLab

Plan

Since 2011
GitLab added:

Kanban Boards

Project
Management

Agile Portfolio
Management

Service Desk

Coming soon:

Value Stream

Management

Requirements

Management

Quality
Management

)

Create

Since 2011

GitLab added:

Source Code
Management

Code Review
Wiki
Snippets

Web IDE

Coming soon:

Design

B
vianagement

Live Coding

OO0
Y

Verify

Since 2012
GitLab added:

Continuous

Integration (CI)
Code Quality

Performance
Testing

Coming soon:
System Testing

Usability

Compatibility

Testing

)

Package

Since 2016

GitLab added:

Container

agictry
Registry

Maven

Repository
NPM Registry
Coming soon:

Rubygem

Registry

Linux Package

Registry

Helm Chart

Registry

Dependency

Proxy

BA%

Release

Since 2016

GitLab added:

Continuous
Delivery (CD)

Release

Orchestration

Pages

Review apps

ncremental

Rollout

Feature Flags

Coming soon:

Binary
Authorization

U

Configure

Since 2018

GitLab added:

Auto DevOps

Runbook

Configuration

Coming soon:

Serverless
PaaS

Chaos
Engineerin

5

Cluster Cost

Optimization

]

Monitor

Since 2016

GitLab added:

Cluster
Monitoring

Coming soon:
Tracing
Error Tracking

Production

Monitoring

Incident

Management

Status Page

Secure

Since 2017
GitLab added:

SAST
DAST

Dependency
Scanning

Container

Scanning

License
Management

Coming soon:

Runtime
Application

Security

What is GitLab

End User

& GitLab

Projects

Your projects ~ Star

dprojects Explore projects

Trending Most stars All

GitLab.org / GitLab Community Edition Developer

-

New project

Last updated

Visibility: Any

®

*5305 @

GitLab Community Edition (CE) is an open source end-to-end software development platform with built-in version co... updated 6 minutes ago

GitLab.org / gitlab-runner Developer
GitLab Runner

F-Droid / Client
Android client application

Q Inkscape / inkscape
= Inkscape vector illustrator

Roberto Rosario / awesome-django

A curated list of awesome Django apps, projects and resources.

GitLab.org / GitLab Enterprise Edition Developer
GitLab Enterprise Edition

George Nachman / iterm2
Issues site for iTerm2

Commit451 / LabCoat

® %1098 @
updated 12 minutes ago

© %109 @
updated 1 day ago

® %96 @
updated 37 minutes ago

© %714 @
updated 1 hour ago

© %623 @
updated 37 seconds ago

*606 @
updated 49 minutes ago

© %59 @

Manage your GitLab projects on the go! GitLab app for Android https://play.google.com/store/apps/details?id=com.com... updated 1 day ago

Engineering

File systems
Databases(s)
Memory stores
Containers
Automation
Coordination I
Networking

@warheadsse @gitlab

v

In the beginning ...

Monoliths are not bad

Monoliths make sense, while viable

e Clear focus for Minimum Viable Product (MVP)
e Addingfeaturesissimple
e Everythingin one bundle

Monoliths are not bad

Advantages of Omnibus
e Full-stack bundle provides all components necessary to use every feature of GitLab
e Simpletoinstall
e Components can be individually enabled/disabled
e Easytodistribute
e Highly controlled, version-locked components
e Guaranteed configuration stability

) 4

Monoliths

Massive, singular, unwieldy

Omnibus GitLab provides a single source of truth and
configuration, for everything about GitLab.

We use it. Our customers use it.

It is massive.

4
%
-
/AR T
M
. =
i, 8 |
J - §/
§ N
R
4
% '}1"
T '-/
g .’.

@warheadsse @gitlab

@warheadsse @gitlab

v

Let me tell you a story ...

Key Concepts

e Snapshot based: stores complete copy of every version of a file
e Number of files: Indexes, pointers, pack files.
e Scale: Bigger =Slower

Example Case

e Clone torvalds/linux.git
e Checkout a branch (any)
e Diff master

How many files were read?

Branch and Merge Request

e Changefiles, stage commits.
e Push these to your remote.
e Now view this in a 'diff' view in the GitLab Ul

@warheadsse @gitlab

v

Now multiply by 10,000

The hard parts

Solving Disk
Spread the load

Faster! Faster! Faster!

So many widgets!

:

L el ol REISR B 15 3>
Bt | e

The hard parts

Solve one, cause another

e Sharding disk with NFS
e Off the disk, onto the network

i T T .
L et mmotsid I B 15
1315 | .0 s

Only two problems:

1. DisklO
2. Network Throughput
3. NFS

@warheadsse @gitlab

) 4

Monoliths have limits

Massive, singular, unwieldy

At a certain scale, they start to tip over

) 4

Old problem,
New answer

Gitaly

gRPC based network service for Git

@warheadsse @gitlab

Significant gains

e Throughput requirement significantly reduced
e Service nodes don’t need disk access
e Optimize for the specific problem

We’ve propped the Monolith up!

Now we can focus on other bottlenecks

@warheadsse @gitlab

v

Forward!

Choke points

Integrating Gitaly exposes less urgent bottlenecks

e NFSshards still used for traditional files
e Does every node need to have NFS??

Solution:
e Object Storage

©up

Q@
<+
<+
©
O
o}
(%]
-+
()
o
()
<+
(L)
| -
(¢0)
Qo
(D)
Up)

/'ﬁ: As(_ﬁ
AN T LN\ o

__0o> Km\ V™
FCnd 4l

@warheadsse @gitlab

E Ingress E Web E Registry E Database
R
& T = il

) 4

Pets

Configured Omnibus at scale

When deployed at scale, each VM has all roles
available, but only small portions activated.

|| smart Proxy | | [1]
([webapp [][]

II

) 4

Cattle

Containerized Services

Component Docker images provide lower resource
requirements.

Each component is directly configured, resulting in
startup as short as 5 seconds.

@warheadsse @gitlab

E Ingress E Web E Registry E Database
=
D [H -

[] Registry]
[[webapp ||

EE'] Gitaly Eii Jobs E Cache rgj Object
i Storage

[T_citRec T][] queves][] cache T[] [[objectStorage] |

Legacy Debt

Some services remain coupled

e Sharingis caring
e Speak <UNIX> sockets to me

@warheadsse @gitlab

v

< time constraints >

New Problems

Can we define individual component requirements?

Resources:
CPU?
Memory?

Network: 000 HEM
Throughput? 9 16
Services? © @

New Problems

What do we use for load balancing?
Which services?
Which providers?

r @

XL
m
F
=

© {

New Problems

Scaling:
Horizontal or vertical?
Automatic or manual?

0
0
0
: @

00
0
O {

New Problems

Resilience:
What happens when things go boom?
How to recover?
How to plan!

r @

XL
m
F
=

O {

GitLab’s beginnings as a monolithic project provided the means for
focused acceleration and innovation.

The need to scale better and faster than traditional models caused us to
reflect on our choices, as we needed to grow beyond the current
architecture to keep up.

New ways of doing things require new ways of looking at them. Be open
minded, and remember your correct choices in the past could not see the
future you live in.

@warheadsse @gitlab

)

THANK YOU!

Jason Plum
Senior Distribution Engineer

@WarheadsSE
gitlab.com/warheadsse
linkedin.com/in/jplum

This story is based on
gitlab.com/charts/gitlab

Comes see GitLab

Booth S44

@warheadsse @gitlab

@warheadsse @gitlab

Cloud Native GitLab

e gitlab.com/charts/gitlab/

G 2 tL b e docs.gitlab.com/ee/install/kubernetes
\/ I a e about.gitlab.com/kubernetes/
Gitaly
Resources e Theroadto Gitaly v1.0

e gitlab.com/gitlab-org/gitaly

https://gitlab.com/charts/gitlab/
https://docs.gitlab.com/ee/install/kubernetes
https://about.gitlab.com/kubernetes/
https://about.gitlab.com/2018/09/12/the-road-to-gitaly-1-0/
https://gitlab.com/gitlab-org/gitaly

