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O

One Year Ago...



O

What is Machine Learning?



O

Machine Learning is a way of
solving problems without
explicitly knowing how to create
the solution.
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Google DC Ops



High PUE

Low PUE

PUE == Power Usage Effectiveness
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O

Containers & Kubernetes



O

Cloud Native Apps



O

Cloud Native ML?



Platform

Building a model

O



Platform

Data ingestion

Trainer

O

Data analysis

Building
a model

Data
transformation

Model

Data validation e

Training

validation at scale

Monitoring Logging

Data splitting g d
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User Experience

Deploy Experiment in
Kubeflow Jupyter

Build Model
Server

O

Build Docker
Image

Integrate Model
into App

Training
at scale

Operate
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Experimentation

C
X

Tooling

Storage

Drivers

Accelerator
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Data ingestion Data analysis Deta Data validation
transformation

Building Model Training

grainet amodel validation at scale

Roll-out Serving Monitoring Logging
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Multi-Cloud is the Reality

Respondents with 1,000+ Employees

o
81 A of enterprises have a multi-cloud strategy

_ 10% Multiple Private

21% Multiple Public
9% Single Public

5% No Plans V

4% Single Private Multi-Cloud
81%

51% Hybrid Cloud

‘IA‘ Source: RightScale 2018 State of the Cloud Report



And Not Just One Cloud!

O

Companies using almost 5 public
and private clouds on average

Public + Private Average Median
Clouds Used All respondents | All respondents
Running Applications G 30
Experimenting 7 1.0

Total 4.8 4.0

Source: RightScale 2018 State of the Cloud Report
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Data ingestion Data analysis Deta Data validation
transformation

Building Model Training

grainet amodel validation at scale

Roll-out Serving Monitoring Logging
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Data

Data ingestion Data analysis

Building

Trainer
a model

Roll-out Serving

Data validation

transformation

Model Training
validation at scale

Monitoring Logging

Data splitting
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Experimentation :

w

Training

Cloud




Kubecon 2017

Introducing Kubeflow




O

Make it Easy for Everyone
to Develop, Deploy and Manage

Portable, Distributed ML
on Kubernetes



Experimentation
e
Kubeflow

I
e
Kubeflow

1



O

Cloud Native ML!



Momentum!

—commits
2K commits
1,976
1.5K
1K
500
0

Jan 30 Mar 2 Apr 2 May 3 Jun 3 Jul 4

%

e 1900+ commits

e 100+ Community contributors

e 30+ Companies contributing,
including:

<
C-J AlibabaCloud ig@wéga ‘ CAN@NICAL
ANT FINANCIAL Caicloud

"CI,'S' élc;' vmware GitHub

Google  Eheptio g‘@ @

HUAWEI

* Q
S~
W\ MOMENTA .
@i Microsoft Jupyter
Pachyderm [ ]

O redhat SEIdon"" # weaveworks
Technologies

Arrikto lgn aws
@2 INTulir S DATAWIRE Q

NVIDIA.



Community Contributions

L X J

Kubernetes Kubeflow




Community Contribution

e Pluggable microservice
architecture for HP tuning
o Different optimization
algorithms
o Different frameworks
e StudyJob (K8s CRD)
o Hides complexity from user
o Nocode needed todo HP
tuning

O

Katib from NTT

2modes

11111
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Community Contribution

e Production datacenter
inferencing server

e Maximize real-time inference
performance of GPUs

o Multiple models per GPU
per node
o Supports heterogeneous
GPUs & multi GPU nodes
e Integrates with orchestration
systems and auto scalers via
latency and health metrics

O

TensorRT from NVidia

Layer & Tensor Fusion

Precision Calibration N Kernel Auto-Tuning

...............

Trained Neural o - Optimized
Network — Inference
Dynamic Tensor Multi-Stream Engine
Memory Execution
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Community Contribution

O

Argo CRD for workflows
Argo CRD is engine for
Pipelines (more on that later)
Argo CD for GitOps

Argo from Intuit
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Community Contribution

e

Jupyter Spawner

o

o

Simplifies starting a new notebook
with all dependencies on KF
Contributions by Arrikto, Red Hat
and Intel

Seldon

o

o

Rich serving solution for multiple
model types
Both commercial and OSS offering

Kubebench

o

Run benchmark jobs on Kubeflow
with various system and model
settings

Leverages TFJobs & Argo

Major contributions from Cisco,
others

jupyter Spawner

5 SELDOW

Kubebench
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O

Introducing Kubeflow 0.4



(almost) Introducing Kubeflow 0.4



What’s new in 0.4?

e Deploy
o Application CRD
o Simplified Setup
e Develop
o Kubeflow Pipelines
o TFJob/PyTorch beta

O



O

Click to Deploy



Click to Deploy

O

Problem: It’s too hard to install Kubeflow!

Solution: A one-click installation tool, available via a clean

web interface

How:

o Click to deploy uses a bootstrap container and kfctl.sh
with all the necessary dependencies included

o Also enables use of declarative infrastructure
deployment (e.g. Deployment Manager on GCP)

o NO TEMPLATING TOOL NEEDED



return ret -

}s

functionArgs:fu
function

340
341
342

0)5 (4 Tength, * 1
- 1i"=! pap§BInt($( 8l s
1)5 pérsent{$(ieslise

Parselnt (i —



O

Kubeflow GitOps



GitOps

e Problem: Maintaining a cluster application is hard

e Solution: Implement a GitOps (coined by WeaveWorks)
driven solution to manage the infrastructure and cluster
code

e How:
o ArgoCD runs the GitOps
o Synchronize Kubeflow deployment with Git repository
o https://www.kubeflow.org/docs/guides/gitops-for-kubef

low/

%
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O

Kubeflow Pipelines



Pipelines

O

Problem: ML solutions are often multi-stage

Solution: Microservices platform designed to enable

reusable components and workflow orchestration

How:

o Kubeflow Pipelines = a Python SDK for describing and
containerizing ML tasks

o Runson Argo (already in the box) and offers experiment
logging and analytics

o Containerized steps lets you extend to your needs
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O

Auto-scaling

43



Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist | .

{ kubernetes}

O

IT
Ops



Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist { .

{ kubernetes}

-

Model works
great! But | need
six nodes.

Lz; J




Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist L.

-

Model works

six nodes.

great! But | need

J

kS

{ kubernetes}

IT
Ops

N

Sure thing, can |
get to it after
O(large number
of things to do)?

\ J




Today, IT Ops Has a Lot of Stuff To Do...

IT
Ops

Data
Scientist | .

{ kubernetes}

-

Rats. Ok, when
you have the
time.

L[; J




Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist | .

{ kubernetes}

IT
Ops



Today, IT Ops Has a Lot of Stuff To Do...

{ kubernetes}/f‘g\)

Data
Scientist | .

IT
Ops



Today, IT Ops Has a Lot of Stuff To Do...

Data

Scientist | .

IT
Ops



Today, IT Ops Has a Lot of Stuff To Do...

Data

Scientist { .

O

)
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IT
Ops
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Whew... that
took a while.
Here you go!
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Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist | .

Thanks!

"
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IT
Ops
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Here you go!
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Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist | .

-

(Lots of Work)
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Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist |

-

OK, I'm all done!
Hope I'm not
forgetting
anything.
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Today, IT Ops Has a Lot of Stuff To Do...
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Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist |

-

Oh noes! We
forgot to
turn it off!
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Today, IT Ops Has a Lot of Stuff To Do...

Data
Scientist | .-

-

Oh noes! We
forgot to
turn it off!

J

"

Ol Ol Ol gl ¢

» PO PO PO PO

.y Kubérnetés
O A O (X «

IT
Ops

TN

Oh noes! We
forgot to
turn it off!

$$$$$

\_

~

)




Autoscaling Jobs

e Describe the job, let Kubernetes take care of the rest
o CPU

o RAM
o Accelerators
e TF Jobs delete themselves when finished, node pool will auto
scale back down (PROTIP: Save your logs elsewhere)

e Can be capped based on maximum scale parameters (your
data scientists won’t bankrupt you)

O



Let’s Give IT Ops the Day Off!

Data
Scientist { .

-

Model works

six nodes.

great! But | need

J

kS

{ kubernetes}




Let’s Give IT Ops the Day Off!

IT
Ops

Data
Scientist

\{ kUbeF“etesJ

Version: "kubeflow.org/vlalphal"
kind: "TFJob"

containers: gcr.io/myco/myjob:1.0




Let’s Give IT Ops the Day Off!

Data

Scientist | .

O

|

kubernetes
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Let’s Give IT Ops the Day Off!

IT
Ops

Data
Scientist | .

{ kubernetes}

Job’s Done!

L[; J




Let’s Give IT Ops the Day Off!

Data IT
Scientist Ops
{ kubernetes} //\
Did you know \
that Youtube

has 1 hour of cat
videos uploaded

every second?
b J
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O

Kubeflow Roadmap



We're just getting started!

Our roadmap:

e Enterprise readiness (1.0, IAM/RBAC, clean upgrades)

e Better Jupyter Notebook Integration

e Pipeline Experiment Comparison & Model Management
e Youtell us! (Or better yet, help!)

O



It’s a whole new world

e Datascience will touch
EVERY industry.

e We can't ask people to become
a PhD in statistics though.

e How do WE help everyone take
advantage of this
transformation?




Enabling ML EVERYWHERE

Let’s give the people not in this room* the
tools to change the world!

Nurses, Civil Engineers, Professors, Social
‘ Workers, Statisticians, Politicians, Teachers,

Lawyers, Environmental Researchers, Housing
Advocates, Scientists, Historians, ...

s * Or watching this video



Kubeflow is !

Q

Open Open

source to ideas




Come Help!

e website: https://kubeflow.org

e github: https://github.com/kubeflow/kubeflow
e slack: kubeflow (http://kubeflow.slack.com)

o twitter: @kubeflow

David Aronchick @aronchick (aronchick@gmail.com)
Jason “Jay” Smith (jaysmith@google.com)

O
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