
Kubernetes Scalability:
A multi-dimensional analysis

Shyam Jeedigunta (@shyamjvs)
Maciej Rozacki (@mrozacki)

Background

FAQs by several devs/teams:

- What scale does k8s support?
- What do we mean when we say “it scales”?
- Why are clusters << 5000 nodes running into scale problems?
- Why aren’t we testing various possible configurations?

Goal

Address those concerns by:

- Explaining what scalability really means
- Eliminating few common misconceptions
- Describing some currently known scalability limits in K8s
- Knowing how we can explore our scalability bounds together

Understanding Scalability

Scalability Limits

Scalability is not a single number (like 5000)

Yes, we ”support” upto 5000 nodes in k8s

But that’s not even close to the whole story!

Let’s see what is...

Nodes

5000

Scalability Envelope

Scalability is a subspace of configurations

Think of it as a ~ higher-dimensional cube (not
really a cube… see next slide)

If you’re within the envelope, you’re safe

By safe, we mean:

- Performance SLOs are satisfied
- Your k8s cluster is not badly broken

Nodes

Namespaces

Pod Churn
Pods/node

Services

Secrets

Backends/service

Net LBs

Ingresses

Source of hypercube image: http://www.gregegan.net/APPLETS/29/29.html

http://www.gregegan.net/APPLETS/29/29.html

Properties of the Envelope

1. NOT a cube

Because...
the dimensions are sometimes NOT independent.

So if we support X1= A and X2= B

we support (X1= A, X2= B)
Nodes

Pods/node

5000

110

Don’t even think
about

it!

E.g

Properties of the Envelope

2. NOT convex

Because...
the dimensions are sometimes NOT linearly dependent.

So if we support configuration A and configuration B

we support configuration (A+B)/2
Services

Backends/service

10k

250 Don’t even
think about

it!

E.g

(5k services,
125 backends/service)

Properties of the Envelope

3. Tapers along each axis

As you move farther along one dimension, your
cross-section wrt other dimensions gets smaller.

So don’t push too many dimensions at once!

Note that it means even a 5-node cluster can break if
you push too much along some dimension(s).

Nodes

Namespaces

Pod Churn# Pods/node

Services

Secrets

Backends/service

Net LBs

Ingresses

E.g

Properties of the Envelope

4. Bounded

No axis can be arbitrarily pushed (even if all others are
kept at minimum).

We have hard limits - mainly due to etcd size. So…

Total #Objects (built-in API objects + CRDs) ≤ X (~300,000*)

is a bounding box.

*It’s a crude limit and assumes etcd size is 4GB (it may change in future)

Source of cube image: https://en.wikipedia.org/wiki/Hypercube Source of cropped hyperbola image: http://inspirehep.net/record/1454384

https://en.wikipedia.org/wiki/Hypercube
http://inspirehep.net/record/1454384

Properties of the Envelope

5. Decomposable into smaller envelopes

Precisely computing the envelope boundaries is too
hard a problem (O(2^#dimensions)).

Luckily, we can ~break it into simpler envelopes, due to
some independence among the dimensions.

Each envelope == some constraint

Let’s look at those...

=

(, , ,)

Source of cube image: https://en.wikipedia.org/wiki/Hypercube Source of cropped hyperbola image: http://inspirehep.net/record/1454384

https://en.wikipedia.org/wiki/Hypercube
http://inspirehep.net/record/1454384

Few notes...

The scalability limits we’re about to discuss are:

- For k8s control-plane in general and NOT specific to any cloud provider
- Don’t form an exhaustive list, but just the known ones
- Form a rough sketch of what we believe are safe configurations based on

historical evidence. So in practice you may be able to:
- push outside these limits to some extent
- screw up even within the limits in some ways

In general, use discretion or consult SIG scalability if in doubt.

#Nodes vs #Pods/node

5k

110

Pods/node

Nodes

30

1300

Kubelet starts getting
overloaded past this point.

Apiserver starts getting
overloaded past this point.

#Pods <= 150k
&

#Nodes <= 5k
&

#Pods/node <= 110

We assume the average #containers/pod
is not too high (<= 2).

Having too many containers might reduce
the limit of 110 because some resources
are allocated per container.

#Services vs #Backends/service

10k

250

Backends/service

Services
(ClusterIP)

5

200

Endpoints traffic becomes
larger after this (due to being
quadratic in #backends).

Performance of iptables
degrades with too many
services in KUBE_SVC chain
after this.

#Backends <= 50k
&

#Services <= 10k
&

#Backends/service <= 250

Note: You can have more backends if
majority of them belong to small services.
For e.g we tested with 75k backends
comprising of:

- 7500 services of size 5
- 600 services of size 30
- 75 services of size 250

https://github.com/kubernetes/community/blob/master/sig-scalability/blogs/k8s-services-scalability-issues.md#endpoints-traffic-is-quadratic-in-the-number-of-endpoints
https://github.com/kubernetes/community/blob/master/sig-scalability/blogs/k8s-services-scalability-issues.md#endpoints-traffic-is-quadratic-in-the-number-of-endpoints

#Services/namespace

#Services <= 10k
&

#Services/namespace <= 5k

5k

Namespaces

Services/namespace

2

This curve represents
limit on total #Services
we can have

After this, size of service-linked env
vars gets too big for the
namespace - causing pod crashes

Pod Churn

Pod churn

Pod churn <= 20/s

20

“ Pod churn = (#Pod-creates|updates|deletes) per second”

<some caveats>

Some caveats:

- You can go above 20 only if you’re manually changing
pods, as controller-manager has default qps limit of 20

- For deletions through GC, only a throughput of 10/s can
be achieved currently as each delete uses 2 API calls

- If pods belong to huge services, higher churn can affect
control plane due to endpoints traffic

#Nodes vs #Configs/node

We got rid of this limitation in k8s 1.12 after moving
kubelets to watch secrets.

Few ways to mitigate it for versions < 1.12:
- Colocate pods needing same set of secrets on

fewer nodes
- Don’t mount the default serviceAccount secret if

your pods don’t need API access or
namespace-based identity5k

Configs/node

Nodes

30

Kubelets make too many “GET
secrets/configmaps” calls on
going beyond this curve.

Limit for #nodes

200

This bound is due to
kubelet qps limit.

“#Configs/Node = Avg (# Unique secrets + # Unique configmaps) needed per node”

Σnodes #Configs <= 150k
&

#Nodes <= 5k

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server

#Namespaces vs #Pods/namespace

10k

3k

Pods/namespace

Namespaces

15

50

Controllers may start seeing a
performance drop as we
increase #pods per namespace

We can have a large no.
of namespaces with few
pods per namespace

#Pods <= 150k
&

#Namespaces <= 10k
&

#Pods/namespace <= 3k

We got rid of the limitation on x-axis in k8s
1.12 after moving kubelets to watch secrets.

https://github.com/kubernetes/community/pull/2231#issuecomment-402439289
https://github.com/kubernetes/community/pull/2231#issuecomment-402439289

Scalability: Next Steps

Knowing our bounds better

SIG scalability:

- tests ‘plain vanilla’ configs, to find core k8s bounds
- doesn’t test features from individual verticals, as then we can’t scale horizontally.

So…

If you’re a k8s developer:

- scale test your features, stressing/adding axes as relevant (use scale presubmits!)
- make the resulting envelopes you discover common knowledge (tell us!)

If you’re a k8s user:

- let us know limits you’ve discovered/faced

Where to find us?

SIG Scalability is happy to receive any feedback/questions through:

- Mailing list: kubernetes-sig-scale@googlegroups.com
- Slack channel: https://kubernetes.slack.com/messages/C09QZTRH7
- SIG meetings: https://zoom.us/j/989573207 (Thursdays 16:30 UTC, bi-weekly)
- SIG page:

https://github.com/kubernetes/community/tree/master/sig-scalability

Tweet #SIGScalability or #K8sScalability with questions/feedback!

Thank you!

