=3
Rook Project Intro

Jared Watts
Rook Senior Maintainer
Upbound Founding Engineer

https://rook.io/

https://qgithub.com/rook/rook .

https://rook.io/
https://github.com/rook/rook

What is Rook?

e Cloud-Native Storage Orchestrator

e Extends Kubernetes with custom types and controllers

e Automates deployment, bootstrapping, configuration,
provisioning, scaling, upgrading, migration, disaster recovery,
monitoring, and resource management

e Framework for many storage providers and solutions

e Open Source (Apache 2.0)

e Hosted by the Cloud-Native Computing Foundation (CNCF)

Storage for Kubernetes

e Volume plugins allow external storage solutions to provide

storage to your apps

master(s)

Node 0

Node 1

8E5

............

#EE

£-dHE)

Dynamic
Storage
Provisioning Google CloudPlatform

Cloud

Software
Defined
Storage

Storage
Appliances

Limitations

e Not portable: requires these services to be accessible
e Deployment burden of external solutions
e Vendor lock-in due to using provider managed services

Storage ON Kubernetes

e Kubernetes can
manage our storage
solution

e Highly portable
applications (including

master(s)

storage dependencies)
e Dedicated K8s storage
cluster also possible

Power of Portability

e Power of choice - cost, features, availability, compliance, etc.
e Take our storage solutions wherever Kubernetes goes
e Pod and Volume abstractions enables portability
o What about databases, buckets, message queues, data
pipelines, etc.?
e Crossplane - open source multicloud control plane
o https://crossplane.io/

https://crossplane.io/

Operator Pattern

e Codifies domain expertise to deploy and manage an
application
o Automates actions a human would normally do

e Control loop that reconciles user’'s desired state and the
actual system state
o Observe - discover current actual state of cluster
o Analyze - determine differences from desired state
o Act - perform operations to drive actual towards desired

Custom Resource Definitions (CRDs)

e Teaches Kubernetes about new first-class objects

e Custom Resource Definition (CRDs) are arbitrary types that
extend the Kubernetes API
o look just like any other built-in object (e.g. Pod)
o Enabled native kubectl experience

e A means for user to describe their desired state

Rook Operators

e Implements the Operator Pattern for storage solutions
e Defines desired state for the storage cluster
o Storage Cluster, Pool, Object Store, etc.
e The Operator runs reconciliation loops
o Watches for changes in desired state
o Watches for changes in the cluster
o Applies changes to the cluster to make it match desired

Rook Operators

e The Operators leverages the full power of K8S
o Services, ReplicaSets, DaemonSets, Secrets, ...
e Contain all the logic to manage storage systems at scale
o Handle stateful upgrades
o Handle rebalancing the cluster
o Handle health and monitoring tasks
e Not on the data path — can be offline for minutes

Rook Architecture

Objects:
Deployments
DaemonSets
Pods Rook
Services
StorageClass / PV / PVC Operators
kubectl [| ClusterRole
[Namespace
. 3 Config Maps Management & Health API
New Objects: % N
Storage
Clusters > Kubernetes
Storage Pools API . Daemons
Object Store | [
File Store T
[
| A A
New Objects:
6eth Volume

Attachments

- . P :
q D..OD: i
S_
“mew“muna !
U 1, o]
_ Y,
\IlllD/\ ||||||||| \ \llll_/
@2 .
1 (@1l 1! !
' N)
_ Y,
L i - N
Ya ~ N -~
[a)l 2 1
€2 €5 “
1 O_ 1 M__ i
—’III\ _’III\— IIIIIII J
_ Y,
J\--mm_\ L s 3
€s: i
" M“ | __ _
K N J
O R
1 1
O Cg: i[:E&2
A T b fg
I Nemmr Scmeme=m? Smm——
S .
[] m
e
v B
©
- o
r e
v E
>
O B ™ :
S5 =K = o o
Y4 .o (7)) U wn
K (@) N — S <
s s & 5
C ¢
~ oo oo
O Q (] < N wn
(] (¥) e QO C u
(O I 1 C (@] © —~
h Q 4 o v m = o -+
ch 8 .29
Q. o 5 . C C o PN~ Z o+ U
-~ — (@© U bo cC C P o< -H
Q MUL »« >0 S O0nmcaa>
(& o £ g« OO0 C ©NO
Av v ++» T E - OH £ UL L O ST
> T ®©® ©® U O o (] +
H C P S U U S c n
Q-+ a
© X £ n

config:

bluestore

storeType:

Rook Framework for Storage Solutions

e Rook is more than just a collection of Operators and CRDs
e Framework for storage providers to integrate their solutions
into cloud-native environments
o Storage resource normalization
o Operator patterns/plumbing
o Common policies, specs, logic
o Testing effort
e Ceph, CockroachDB, Minio, NFS, Cassandra, Nexenta, and
more...

Demo

Deploying a Ceph cluster with a
Stateful Application

How to get involved?

e Contribute to Rook
o https://github.com/rook/rook
o https://rook.io/
e Slack - https://rook-io.slack.com/
o #conferences now for Kubecon Seattle
e Twitter - @rook_io
e Forums - https://aroups.gooale.com/forum/#!forum/rook-dev
e Community Meetings

https://github.com/rook/rook
https://rook.io/
https://rook-io.slack.com/
https://groups.google.com/forum/#!forum/rook-dev

More Rook Sessions

e Rook Deep Dive
o Code & architecture specifics, Ceph deep dive
o Thurs Dec 13th, 11:40am @ 618-620
e Meet the Rook Maintainers
o Chat with project leaders and ask questions
o Thurs Dec 13th, 12:30pm @ CNCF Booth
e Adding a New Storage Provider to Rook
o What are the steps and benefits for integrating new storage

solutions with Rook?
o Thurs Dec 13th, 4:30pm @ 611-614

Questions?

https://qithub.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/

Thank you!

https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/

