
On-Premise
Kubernetes
at T-Mobile
James Webb
MTS, Platform Engineering

Brendan Aye
Sr. MTS, Platform Engineering

T-Mobile Platform Engineering
▪ Started as a three-person team in May 2016

▪ Goal: Bring Cloud Foundry to the Enterprise

▪ Now 25 strong supporting IT facing IaaS, CaaS &
PaaS platforms wearing many hats

▪ Infrastructure Engineers

▪ System Administrators

▪ Developers

▪ Platform Administrators

▪ Product Managers

▪ Customer Success Engineers

▪ Part of a larger organization supporting all On-
Premise IT infrastructure for T-Mobile

Who We Are

▪ PaaS (Pivotal Cloud Foundry)
▪ 12 customer facing foundations in two data centers

▪ 34,000 application instances (containers)

▪ Roughly 40% production/60% non-production

▪ 300M+ production transactions/day

▪ Associated platform hosted data services (MySql,
RabbitMQ, Gemfire, Redis, …)

▪ CaaS (Kubernetes)
▪ 24 clusters, both single and multi tenant

▪ Mix of open source and vendor deployments

▪ 5 live applications (some turning up just this week)

▪ ~1M production transactions/day

▪ IaaS (BOSH)
▪ For platform and customer needs

What We Manage

▪ Speed to market
▪ DevOps teams can onboard and push apps to production same day
▪ Some teams went from 6 months dev to prod cycle to weeks

▪ Increased application performance & reliability
▪ Average 43% reduction in app response time
▪ 83% fewer incidents, resolved 67% faster

▪ Deployment agility
▪ 10x increase in planned deployments
▪ Daytime changes, blue/green deployments, canary testing

▪ Developer efficiency
▪ Platform abstractions let developers focus on development
▪ No longer need to manage OS patching, load balancing, certificates – all built

in to the platform

▪ Workload consolidation
▪ In some cases 12x efficiency gain in HW footprint
▪ Adjacent workloads benefit from proximity

Business Impact of PaaS

▪ The CaaS gap
▪ No standard offering for teams to run containers

▪ Shadow Docker

▪ Not everything is a good fit for Cloud Foundry
▪ Non-native containers

▪ Vendor supplied docker containers becoming more common

▪ Lift & shift

▪ Non-HTTP/HTTPS traffic management limited
▪ No persistent storage

▪ NFS volume services available for PaaS, but a trap

▪ Platform data services meet some, but not all application needs

▪ No platform orchestration
▪ Complex/stateful application management needs to be external

If PaaS Is So Great….

▪ Data Center Gravity
▪ Data

▪ Beyond the Chandrasekhar limit

▪ Network
▪ Latency matters

▪ Security
▪ On-Premise controls and patterns well understood

▪ Organizational
▪ Lack of public cloud expertise

▪ Most compliance

▪ Cost
▪ Strong economies of scale in data center - if we execute

▪ Capex vs Opex

▪ Destiny
▪ Own it

▪ Public Cloud available
▪ Public Cloud team offers K8S and many other services

Why On-Premise?

▪ Platform Team:
▪ Highly Available at every level

▪ Control Plane (etcd/API)

▪ Worker Nodes

▪ Authn/Authz

▪ Automated Deployment

▪ Control Plane (OpsMan/Bosh)

▪ Cluster builds

▪ No Downtime Lifecycle Management

▪ K8S Upgrades

▪ OS Patching

▪ Infrastructure Maintenance

▪ LDAP Integration

▪ API Configurability

▪ Automated Ops

▪ DevOps Teams:
▪ Native K8S Experience

▪ Container Orchestration

▪ PaaS-like support experience
▪ Out of the box cert/load balancing

▪ OS Patching

▪ Infrastructure Maintenance

▪ Persistent Storage

▪ Single AZ

▪ Cross AZ replication

▪ Cross Cluster replication

▪ TCP Ingress

▪ Service type LoadBalancer

▪ Centralized Logging/Metrics

▪ APM + Platform

CaaS Requirements

▪ Each Region a set of 3 availability
zones
▪ Shared nothing architecture
▪ Each AZ is a single rack with independent:

▪ Network
▪ Compute
▪ Storage

▪ Isolated behind a spine/leaf pattern
▪ High-bandwidth/low latency east-west network
▪ Intra-AZ traffic isolated behind border leaves

▪ Region max capacity
▪ ~55 TB Memory
▪ ~2200 Cores
▪ ~2 PB Storage

Network

Compute

Storage

Network

Compute

Storage

Network

Compute

Storage

Spine/Leaf

“Region” Architecture

DC2DC1

DC2-01

DC1-01

DC2-02DC1-02

DC1-03

GSLB

Mutli-DC

▪ Multiple regions in each data center
▪ Separate regions for production and non-production

▪ Near/Near/Far deployment strategy for applications with a data center preference

▪ GSLB available for active/active & active/passive cross-region deployments

▪ Automated cluster deploy with PKS
▪ Concourse install of PKS framework

▪ Infrastructure (Compute, Network, Storage)

▪ Concourse deployment of cluster
▪ Select a plan, define # of workers and deploy

▪ Post cluster configuration
▪ Once cluster is deployed we T-Mobilize the cluster

▪ Monitoring/Telemetry (Prometheus)

▪ Persistent Storage (Portworx)

▪ Ingress (NGINX)

▪ Logging (send to Splunk)

▪ External Load Balancers configured for API, HTTPS Ingress & TCP Ingress

▪ Day 2 Ops
▪ Org/User Mangement

▪ GitOps (in progress)

▪ Support

K8S Dial Tone

▪ Enable, but don’t burden platform customers
▪ Platform Engineering team manages:

▪ Infrastructure (Compute, Network, Storage)

▪ Cluster installs, upgrades, decommissions

▪ Base cluster tooling and capabilities (monitoring, logging, ingress, persistent storage, …)

▪ Multi-tenant clusters
▪ More efficient use of resources

▪ Namespace isolation for DevOps teams

▪ Provide ingress with default certificate for HTTPS, but customers can also bring their own cert

▪ Single tenant clusters
▪ Sensitive environments

▪ High utilization customers

▪ Advanced customers who need more control

Cluster Ownership

▪ Live Apps
▪ Critical order management, retail store and call centers apps live

▪ https://maps.t-mobile.com

▪ Upgrades/Patching
▪ Seamless upgrade from 1.10 -> 1.11

▪ Automation allowed for same day, no impact patching of recent API CVE

▪ Persistent Storage
▪ In use by platform team and customers

Early Successes

https://maps.t-mobile.com/

▪ TCP Ingress
▪ Fully automated type LoadBalancer still elusive

▪ Workarounds in place, but high support overhead

▪ Adoption/Velocity
▪ Developer community starting from scratch with K8S

▪ Cloud Native COE ramping up to help

▪ Lack of API configurability
▪ On the PKS roadmap

Challenges

▪ Own what you can
▪ Not realistic, so friends close, enemies closer

▪ Limit blast radius any of one install (cluster, region, database, foundation, …)
▪ Too big to fail isn’t just a Wall Street problem

▪ Upgrade/patch often
▪ Customers informed, not consulted
▪ Automate repaves to happen even when they’re not needed
▪ Don’t let individual apps dictate schedules

▪ Set expiration dates
▪ Don’t let clusters become pets
▪ Encourage customers to be able to deploy to multiple targets

▪ Automate everything
▪ Well, of course

▪ Create a community for your customers to interact with support teams and each other
▪ Slack is our first stop for help

Lessons Learned

▪Hosted Data Services
▪ Istio/Envoy
▪Knative
▪Operators
▪Federation

On the Horizon

Tool Chest

Q&A

