Getting The Most Out Of Kubernetes

Optimizing Cluster Resource Allocation in Production




e What are resource Requests and Limits
» How do you set good Requests and Limits
e Tools X
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¢ Preexisting endpoint in the monolith

case Study: I_inks SerVice « Serves the number of times a link is shared

within Buffer




¢ Settled on a simple design using Node and
DynamoDB

Case Study: Links Service




e Deployed the service to Kubernetes (4
replicas)

case Study: I.inks Service e Manually verified that the service was

operational







1% ® 10%




1% = 10% = 50%




1% ®10% = &




e Scaled up replicas (5x - 20 pods)

case Stlldy: I.inks Service ¢ Helped, but pods still repeatedly dying




Back to 0%




¢ | had copied and pasted a peployment from
another service

case Study: I.inks Service e The peployment included resource limits

® kubectl describe Was reporting oovMkilled




Resource Limits

o Upper limit on container resources
¢ Containers run with unbounded CPU and memory limits
o Kubernetes will restart containers when limits are exceeded




Resource Requests

e Allocated resources for a container
« Containers may be throttled back down to request when exceeded
o Matches limit if no requests set explicitly




Quality Of Service (Q0S)

Guaranteed - ‘ ‘
‘




¢ Highest Priority
e Limit = Request

QOS: Guaranteed

Request = Limit = 200m
—>




¢ Requested resource is guaranteed
e Limit > Request

Request = 100m
+—

QOS: Burstable




QOS: BestEffort « YOLO (V).




o L owest Priority
e Can use any amount of free resources

QOS: BestEffort




How do we set CPU and Memory limits?




¢ Pods have enough resources to complete
their task
¢ Nodes run maximum number of pods

Optimal* Limits




Under/Over/Optimal* Resource Allocation




Under-allocation




Overallocation




Overallocation is tricky




It becomes a problem when you scale up replicas







That's one extra pod that could be running







Kubernetes Monitoring
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PSA: Heapster Is Deprecated

e Deprecation in v1.11
e Removal in v1.13
e Suggest migrating to Metrics Server + Prometheus

https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md#heapster-deprecation-timeline



https://github.com/kubernetes-incubator/metrics-server
https://prometheus.io/
https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md#heapster-deprecation-timeline

Setting Limits and Requests

Goal: Understand what one pod can handle

Use limits during testing

Start with a very conservative set of limits

Only change one thing at time and observe changes

# limits might look something like
replicas: 1

cpu: 100m # ~1/10th of a core
memory: 50Mi # 50 Mebibytes




Testing Strategies
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Demo

Setting Limits For etcd




Keep A Fail Log




Memory is slowly increasing
CPU is pegged at 100%

500s

High response times

Dropped Requests

Large variance in response times

Some Observed Failure

Modes




Case Study: Links Service

Lessons Learned




It's About Increasing Predictability

And Getting More Sleep




¢ Change Deployment replica count based
. on a metric (scale up or down)
Horlzontal Pod e Custom metrics from Prometheus, Azure
Adapter, and StackDriver
o Well supported and feature rich
o Cooldown/Delay Settings

o Multiple Metrics
o External Metrics

Autoscaler (HPA)



https://github.com/coreos/prometheus-operator
https://github.com/Azure/azure-k8s-metrics-adapter
https://github.com/GoogleCloudPlatform/k8s-stackdriver

¢ Change Pod resource requests in place
e Pod restart is required to change limits
¢ Alpha Feature

Vertical Pod Autoscaler —
(VPA) )




LOOklng Ahead:  Tooling for aggregate metrics are fantastic

(Prometheus, Datadog, etc.)

Kubernetes Developer ¢ Need high resolution tools to analyze

individual Deployments, Pods and
T I containers




KubeScope CLI &

https://github.com/hharnisc/kubescope-cli



https://github.com/hharnisc/kubescope-cli

k8s_test-server_docker-test_default_643d3b34-dala-11e8-88a5-74e4c94a959_2
cpu percent
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0.
3:57 16 07 16:34:17

carbon-wolf- i :x D> httpstress -c 50-g http://localhost:3000




Questions?




