Getting The Most Out Of Kubernetes

Optimizing Cluster Resource Allocation in Production

e What are resource Requests and Limits
» How do you set good Requests and Limits
e Tools X

Staff Software

Engineer @ ZEIT
Harrison Harnisch A

https://twitter.com/hjharnis

¢ Preexisting endpoint in the monolith

case Study: I_inks SerVice « Serves the number of times a link is shared

within Buffer

¢ Settled on a simple design using Node and
DynamoDB

Case Study: Links Service

e Deployed the service to Kubernetes (4
replicas)

case Study: I.inks Service e Manually verified that the service was

operational

1% ® 10%

1% = 10% = 50%

1% ®10% = &

e Scaled up replicas (5x - 20 pods)

case Stlldy: I.inks Service ¢ Helped, but pods still repeatedly dying

Back to 0%

¢ | had copied and pasted a peployment from
another service

case Study: I.inks Service e The peployment included resource limits

® kubectl describe Was reporting oovMkilled

Resource Limits

o Upper limit on container resources
¢ Containers run with unbounded CPU and memory limits
o Kubernetes will restart containers when limits are exceeded

Resource Requests

e Allocated resources for a container
« Containers may be throttled back down to request when exceeded
o Matches limit if no requests set explicitly

Quality Of Service (Q0S)

Guaranteed - ‘ ‘
‘

¢ Highest Priority
e Limit = Request

QOS: Guaranteed

Request = Limit = 200m
—>

¢ Requested resource is guaranteed
e Limit > Request

Request = 100m
+—

QOS: Burstable

QOS: BestEffort « YOLO (V).

o L owest Priority
e Can use any amount of free resources

QOS: BestEffort

How do we set CPU and Memory limits?

¢ Pods have enough resources to complete
their task
¢ Nodes run maximum number of pods

Optimal* Limits

Under/Over/Optimal* Resource Allocation

Under-allocation

Overallocation

Overallocation is tricky

It becomes a problem when you scale up replicas

That's one extra pod that could be running

Kubernetes Monitoring

Kubelet
cAdvisor

Node

Master

Heapster

Kubelet
cAdvisor

Node

Storage
Backend

Node

Kubelet

Node

Heapster

cAdvisor

Kubelet

Node

PSA: Heapster Is Deprecated

e Deprecation in v1.11
e Removal in v1.13
e Suggest migrating to Metrics Server + Prometheus

https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md#heapster-deprecation-timeline

https://github.com/kubernetes-incubator/metrics-server
https://prometheus.io/
https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md#heapster-deprecation-timeline

Setting Limits and Requests

Goal: Understand what one pod can handle

Use limits during testing

Start with a very conservative set of limits

Only change one thing at time and observe changes

limits might look something like
replicas: 1

cpu: 100m # ~1/10th of a core
memory: 50Mi # 50 Mebibytes

Testing Strategies

Maintain cientload
From D fo 50 e
205 duraon

=2
==
—
s

Ramp Up Test

s

205 duraon

Duration Test o

ccccccccccccccc

Demo

Setting Limits For etcd

Keep A Fail Log

Memory is slowly increasing
CPU is pegged at 100%

500s

High response times

Dropped Requests

Large variance in response times

Some Observed Failure

Modes

Case Study: Links Service

Lessons Learned

It's About Increasing Predictability

And Getting More Sleep

¢ Change Deployment replica count based
. on a metric (scale up or down)
Horlzontal Pod e Custom metrics from Prometheus, Azure
Adapter, and StackDriver
o Well supported and feature rich
o Cooldown/Delay Settings

o Multiple Metrics
o External Metrics

Autoscaler (HPA)

https://github.com/coreos/prometheus-operator
https://github.com/Azure/azure-k8s-metrics-adapter
https://github.com/GoogleCloudPlatform/k8s-stackdriver

¢ Change Pod resource requests in place
e Pod restart is required to change limits
¢ Alpha Feature

Vertical Pod Autoscaler —
(VPA))

LOOklng Ahead: Tooling for aggregate metrics are fantastic

(Prometheus, Datadog, etc.)

Kubernetes Developer ¢ Need high resolution tools to analyze

individual Deployments, Pods and
T I containers

KubeScope CLI &

https://github.com/hharnisc/kubescope-cli

https://github.com/hharnisc/kubescope-cli

k8s_test-server_docker-test_default_643d3b34-dala-11e8-88a5-74e4c94a959_2
cpu percent
0.0
0.0
0.0
0.0
0.0
0.0

memory percent
0.3

0.
0.2
0.
0.
0.
3:57 16 07 16:34:17

carbon-wolf- i :x D> httpstress -c 50-g http://localhost:3000

Questions?

