
Running a distributed system across
Kubernetes clusters

Presented by Alex Robinson / Member of the Technical Staff
@alexwritescode

@cockroachdb

Running on Kubernetes has gotten much easier

• Dynamic volume provisioning

• Statefulsets

• Multi-zone clusters

• Managed Kubernetes services

• Helm Charts

• Operators

@cockroachdb

...Unless you want your service to span regions

@cockroachdb

Why run a system across multiple regions?

@cockroachdb

Why run a system across multiple regions?

• Latency

@cockroachdb

Why run a system across multiple regions?

• Latency

• Fault tolerance

@cockroachdb

Why run a system across multiple regions?

• Latency

• Fault tolerance

• ...Bureaucracy?

@cockroachdb

Let’s talk about running across Kubernetes clusters

• Why is it hard?

• What do you need to know to get started?

• Solutions

@cockroachdb

My experience with Kubernetes

• Worked directly on Kubernetes and GKE from 2014-2016

○ Part of the original team that launched GKE

• Lead all container-related efforts for CockroachDB

○ Configurations for Kubernetes, DC/OS, Docker Swarm, even Cloud Foundry

○ AWS, GCP, Azure, On-Prem

○ From single availability zone deployments to multi-region

○ Help users deploy and troubleshoot their custom setups

@cockroachdb

The problem
What’s so hard about spanning across clusters?

@cockroachdb

Multi-region == Multi-Kubernetes-cluster

• Kubernetes is not designed to span WANs

○ Originally didn’t even want to have to span datacenters/AZs within a region, but the

community fought for that and made it happen

• Try to run a single k8s cluster across regions at your own risk

@cockroachdb

What does a distributed stateful system need?

@cockroachdb

Our example: CockroachDB

consensus

NODE 4

node 2

SQL API

Distributed, transactional KV

SQL API
CockroachDB is an open source distributed SQL database

1. SQL: Your applications use standard PostgreSQL
2. Ranges: Tables are sorted by key, split into 64MB chunks

and each range is then replicated across the cluster
3. Nodes: If a node is added, remove or fails, the cluster

automates redistribution and replication of ranges
4. Consensus: Consensus protocol ensures consistency and

highest level of isolation for transactions
5. Locality: In a distributed environment you can tie data to

a location (physical, logical, real)

node 1

node 3

node 4 node 5

@cockroachdb

Running CockroachDB in Kubernetes

• Cockroach requires (roughly) three things:

1. Each node has persistent storage that survives restarts

2. Each node can communicate directly with every other node

3. Each node has a network address that survives restarts

@cockroachdb

Running CockroachDB in Kubernetes

• Cockroach requires (roughly) three things:

1. Each node has persistent storage that survives restarts

2. Each node can communicate directly with every other node

3. Each node has a network address that survives restarts

• Kubernetes provides these very well within a single cluster

@cockroachdb

Running CockroachDB in Kubernetes

• Cockroach requires (roughly) three things:

1. Each node has persistent storage that survives restarts

2. Each node can communicate directly with every other node

3. Each node has a network address that survives restarts

• Kubernetes provides these very well within a single cluster

• Across multiple Kubernetes clusters, we lose #3 and often #2

@cockroachdb

The core problems: what’s missing?

• It all comes down to networking:

○ Pod-to-pod communication across clusters

■ Including across private networks (e.g. cloud VPCs) when applicable

○ Persistent address that works both within and between clusters

@cockroachdb

Kubernetes networking
What’s the deal with multi-cluster networking?

@cockroachdb

Kubernetes networking

• Kubernetes doesn’t care how it’s done, but it requires that:

1. Each pod has its own IP address

2. The IP that a pod sees itself as is the same IP that others see it as

3. All pods can communicate with all other pods without NAT

@cockroachdb

Kubernetes networking

• Kubernetes doesn’t care how it’s done, but it requires that:

1. Each pod has its own IP address

2. The IP that a pod sees itself as is the same IP that others see it as

3. All pods can communicate with all other pods without NAT

• The problem: we want to run tens of pods on each machine, but

traditional networks only allocate one or two IP addresses to each host

@cockroachdb

Kubernetes networking

• From the very beginning, Kubernetes made these specific demands

about what the network in a cluster must enable

○ Since then, dozens of solutions have been built to satisfy those requirements

• But the multi-cluster scenario is left completely unspecified

@cockroachdb

@cockroachdb

Kubernetes networking

• Some enable pod-to-pod communication across clusters out of the box

○ e.g. GKE, EKS

• Some make it fairly easy to enable

○ e.g. AKS (“advanced” networking mode), Cilium (“cluster mesh”)

• It can be quite difficult in others

@cockroachdb

Solutions
So what can we do?

@cockroachdb

Multi-cluster solutions

• The options all have one problem or another

○ Don’t work in subsets of environments

○ Break easily if operator doesn’t know exactly what they’re doing

○ Use a slow, less reliable datapath

○ Don’t work with TLS certificates

○ Rely on a relatively immature, complex system

@cockroachdb

Solution #1: Static pod placement + HostNetwork

• `HostNetwork` option lets a pod use the host machine’s network directly

• Use each host’s routable IP address for all communication

• Statically assign pods to machines so that all nodes’ IPs stay the same

@cockroachdb

Solution #1: HostNetwork + Public IPs

• Pros:

○ Works even when pod-to-pod communication between clusters doesn’t

○ No moving parts

○ Using `HostNetwork` can actually give a nice performance boost

• Cons:

○ Depends on host IPs not changing

■ Some cloud providers delete and recreate VMs during node upgrades

○ Requires a lot of manual config-file editing and certificate creating

○ Uses up valuable ports on the host machines, can hit port conflicts

@cockroachdb

Solution #2: External load balancer for each pod

• Create a public load balancer for each Cockroach pod

○ It’s really easy to expose a service with a load balancer in all the major cloud providers

• Have all pods connect to each other with the load balancer IPs/DNS names

@cockroachdb

Solution #2: External load balancer for each pod

pod-0 lb-c1p0

pod-1

Cluster 1

pod-0

pod-1

Cluster 2

lb-c1p1

lb-c2p0

lb-c2p1

@cockroachdb

Solution #2: External load balancer for each pod

• Pros:

○ Works even when pod-to-pod communication between clusters doesn’t

○ Continues working even as Kubernetes hosts churn in/out of the cluster

○ No need to configure a cross-cluster naming service

■ Because the load balancer addresses never change once they’re created

@cockroachdb

Solution #2: External load balancer for each pod

• Cons:

○ Requires provisionable load balanced addresses - not always available on-prem

○ Can be expensive to run so many load balancers

○ A lot of manual config-file editing and cert creating with LB addresses

■ Informing each pod of its public IP requires pretty complex configuration

○ Need to create new service and LB whenever you want to scale up

○ Extra hops on data path on all but the most sophisticated load balancers

■ src pod->src host->LB->random host->dst host->dst pod

@cockroachdb

Solution #3: Use pod IPs directly

• Just let pods advertise their pod IPs to each other directly

○ Assuming pod-to-pod connectivity across clusters

• Rely on Cockroach’s handling of address changes to deal with the inevitable

churn as pods move to different nodes and get different IPs

• Set up an internal load balancer that only gets used for the --join flag

○ Won’t be used on the data path, since cockroach nodes will share their pod IP addresses

internally via gossip once joining

@cockroachdb

Solution #3: Use pod IPs directly

pod-0

pod-1

Cluster 1

pod-0

pod-1

Cluster 2

@cockroachdb

Solution #3: Use pod IPs directly

• Pros:

○ No overhead on data path (except normal Docker overhead)

○ Very resilient to changes like hosts being removed/added/restarted

○ Very little manual work needed to configure and maintain

• Cons:

○ Network must support direct pod-to-pod communication across clusters

○ Because IP addresses can change across pod deletions/recreations, creating TLS

certificates that can stand up to hostname verification is very tricky

@cockroachdb

Solution #4: DNS chaining

• Basically: how can we add persistent names to the previous solution?

○ Needed for TLS certificates or for systems that can’t handle changing addresses

@cockroachdb

Solution #4: DNS chaining

pod-0

pod-1

Cluster 1

kube-dns

pod-1?

10.1.0.1

Kube-
apiserver

Services/
endpoints

@cockroachdb

Solution #4: DNS chaining

• Option 1: Use CoreDNS instead of the default kube-dns service

○ CoreDNS allows for much more customization, including plugins that allow it to watch

multiple Kubernetes apiservers

■ https://github.com/coredns/kubernetai was written to do just what we want

○ But swapping CoreDNS in for kube-dns on managed offerings is shockingly difficult

■ As is customizing each cluster’s DNS domain from the `cluster.local.` default, which

would be important for this approach

○ CoreDNS is becoming the standard as of 1.13, so this should become more feasible as

more clusters switch over to it

https://github.com/coredns/kubernetai

@cockroachdb

Solution #4: DNS chaining

• Option 1.5: Use CoreDNS alongside the default kube-dns service

○ Configure kube-dns to defer certain lookups to CoreDNS

○ Configure CoreDNS to watch the other k8s clusters’ apiservers

○ Add in some CoreDNS rewrite rules to make cross-cluster lookups work out

○ Haven’t properly tried this out so I’m being a little fuzzy on the details

@cockroachdb

Solution #4: DNS chaining

• Option 2: Chain DNS servers together using “stub domains”

○ Use KubeDNS config feature to defer DNS lookups for certain domains to the nameserver of

your choice

○ e.g., configure KubeDNS in us-west1 to redirect lookups for `*.us-east1.svc.cluster.local` to

the us-east1 cluster’s DNS service

○ This is what I’ve put together scripts for people to try out on GKE

@cockroachdb

Solution #4: DNS chaining

@cockroachdb

Solution #4: DNS chaining

pod-0

pod-1

Cluster 1

kube-dns

pod-1.cluster-1?

10.1.0.1

@cockroachdb

Solution #4: DNS chaining

pod-0

pod-1

Cluster 1

kube-dns

pod-1.cluster-2?

10.2.0.1

pod-0

pod-1

Cluster 2

kube-dns
pod-1.cluster-2?

10.2.0.1

@cockroachdb

Solution #4: DNS chaining

• Pros of using stub domains:

○ No overhead on data path (except normal Docker overhead)

○ Very resilient to changes like hosts being removed/added/restarted

○ No need to add any extra controllers to the clusters

○ Very little manual work needed to get running (totally scriptable)

• Cons of using stub domains:

○ Network must support pod-to-pod communication across clusters

○ Need to set up load balanced endpoints for each DNS server

■ Cloud support for this isn’t great…

@cockroachdb

Solution #5: Istio

• Istio has been working on a “multi-cluster” mode to handle the problem of

addressing services across clusters

○ It’s explicitly not addressing the problem of pod-to-pod connectivity, though -- just naming

• Install Istio control plane in one primary k8s cluster, then install special

“istio-remote” components in others

@cockroachdb

Solution #5: Istio

• Pros:

○ Under very active development, looks likely to improve over time

○ Small overhead on data path (packets go through Envoy proxy)

○ Very resilient to changes like hosts being removed/added/restarted (at least in theory)

• Cons:

○ Still immature - entire control plane runs in a single k8s cluster (single point of failure)

○ Very involved setup process

○ Docs say “production environment might require additional steps”, at least one of which

essentially boils down to solving this problem for the Istio components themselves

○ Requires copying k8s cluster credentials into each other (potential security concern)

@cockroachdb

Solution #6: Roll your own

• Can always do your own thing, e.g.:

○ Set up your own custom DNS servers outside Kubernetes

○ Set up your own auto-certificate approver for pod IPs then use them directly

○ Manage your own clusters, use CoreDNS, and modify it as you please

○ Set up your own proxy server(s) to manage stable, routable addresses

○ Etc.

• Tough for us to widely recommend due to environmental differences, but

actually quite reasonable if you have a single stable environment

@cockroachdb

Summary

@cockroachdb

Conclusions

• Multi-cluster networking is a bit of a minefield

○ Left completely unspecified, so different installations can vary wildly

○ Very little has been done about it for years

• Even after you nail pod-to-pod connectivity, you still have to solve naming

• People are finally starting to care, though! (e.g. Cilium, Istio, Upbound)

• It’s hard to recommend a single answer for everyone, but there are very

reliable options if you’re willing to spend some time up-front on setup

Thank You!
For more info:
cockroachlabs.com
github.com/cockroachdb/cockroach

@alexwritescode

Questions?

