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Introducing Istio Ny
* Author “Microservices for Java developers” ﬁ/leigc')csee '?('/iecsézfor
and “Introducing Istio Service Mesh” .
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 Committer/contributor lots of open-source projects

* Blogger, speaker, mentor, leader




https://www.manning.com/books/istio-in-action
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"This really is an innovative approach, but I'm afraid
we can't consider it. It's never been done before."
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New capabilities need to work with
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As we move to services architectures,
we push the complexity to the space
between our Services.
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Application integration

* Orchestrate calls across multiple microservices
 Calls in parallel, sequential, etc

 Aggregate, combine, transform, split, on “messages”

 Deal with errors, unexpected results
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Application integration

 Deal with atomicity / consistency issues

« Message idempotency / message de-dupe
 APIs / DDD anti-corruption layers / adapters
 Tie in with existing “backend systems”

* Deal with making calls over the network
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Application networking

Service discovery
Load balancing \[\QQ&

Timeouts

($
Retries \OQQ Y
Circuit breaking @Q’\)L O\\QOC(Q/ \MDQ/P
Rate limiting ¢ NZ(

@christianposta



Application safety and correctness in a
distributed system is the responsibility of
the application teams.
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Integration is part of the
application-development process.
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Meet Ballerina

http://ballerina.io

Barnerina



Ballerina is...

* A new language purpose-built for creating services/APIls and
integrating with existing investments/services

« Built by WSO2

« Static, strong typing with language constructs that make
services and service interaction first-class citizens

« Strong focus on network awareness
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Ballerina is...

« Built around a “sequence-diagram” mental model
 Round-trip development as a first-class citizen
* Native concurrency model

« Solves problems around application integration like:

Quickly build APIs based on OAPI
Reusable protocol / backend adapters
Long-running execution with checkpointing
Stream based processing

» Service call orchestration

* Aggregating responses

« Data security

+ Transactions, compensations
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import ballerina/http;
import ballerina/io;

listener http:Listener recommendationListen = new (8080);
?
service sayhello on recommendationListen

http:ResourceConft Li;

methods: [ B

path:

resource function showRecommendations(http:Caller caller, http:F

http:Response response = new;
response.setTextPayload(
_ = caller —> respond(response);

st request)
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So: what about application networking?
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Application networking

«  Service discovery

* Retries

« Timeouts

 Load balancing

 Rate limiting

 Thread bulk
heading

»  Circuit breaking

@christianposta

Edge/DMZ routing
Surgical, per-request
routing

A/B rollout

Traffic shaping

Internal releases / dark
launches

Request shadowing

Fault injection

adaptive, zone-aware
Deadlines

Health checking

Stats, metric, collection
Logging

Distributed tracing
Security



“Microservices” patterns

NETFLIX |

« Netflix Hystrix (circuit breaking / bulk heading)

« Netflix Zuul (edge router)

* Netflix Ribbon (client-side service discovery / load balance)
* Netflix Eureka (service discovery registry)

« Brave / Zipkin (tracing)

* Netflix spectator / atlas (metrics)
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@christianposta http://bit.ly/application-networking



Screw Java - I'm using Node]S!
JavaScript is for rookies, I use Go!

But python is so pretty!

[ prefer unreadability... Perl for me!
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In practice, operability of our services
becomes a top priority very fast
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Let’s optimize for operability
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Meet Envoy Proxy

http://envoyproxy.io
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As a service-instance proxy
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Time for definitions:

A service mesh is a distributed application infrastructure
that is responsible for handling network traffic on behalf
of the application in a transparent, out of process manner.

A service mesh helps to solve problems related to
resiliency, security, observability, and routing control.
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Service mesh technologies typically provide:

« Service discovery / Load balancing

« Secure service-to-service communication
« Traffic control / shaping / shifting

« Policy / Intention based access control

« Traffic metric collection

« Service resilience
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Open-source, service-mesh implementations

* Istio.io A 1sto
http://istio.io

e Consul Connect (- Consul

http://consul.io

 LinkerD 5S1LINKERD

http://linkerd.io
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[sn’t there overlap??

 Service discovery
 Load balancing

* Timeouts

* Retries

e Circuit breaking

* Rate limiting

* Distributed tracing
* ...Some others ...
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Key takeaways:

Leverage the service mesh for key, consistent application-
networking behavior.

Develop a workflow for application teams that includes
configuration of the service mesh as part of the application.

Opt for language-specific implementations when the general
service mesh solution doesn’t adequately solve a spec1f1c
problem. A A
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Key takeaways:

Resist the urge to put application-integration logic into the
service mesh.

Understand the “why” of service mesh and seek to keep the
boundary delineated
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Customer [ preference

http://bit.ly/istio-tutorial
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Thanks!

Twitter: @christianposta
Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

Follow up links:

» http://ballerina.io

» http://istio.io

* http://envoyproxy.io

» http://developers.redhat.com/blog

* http://blog.christianposta.com/istio-workshop/slides/
« http://blog.openshift.com

* https://www.redhat.com/en/open-innovation-labs

BTW: Hand drawn diagrams made with Paper by FiftyThree.com ©



