Evolution of Integration and
Microservices with Service Mesh
and Ballerina

@christianposta

Christian Posta @ rednat

Chief Architect, cloud application development

Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

Introducing Istio Ny
* Author “Microservices for Java developers” ﬁ/leigc')csee '?('/iecsézfor
and “Introducing Istio Service Mesh” .

s
o
| ,@-"’

 Committer/contributor lots of open-source projects

* Blogger, speaker, mentor, leader

https://www.manning.com/books/istio-in-action

II MANNING

A .bacall| [~

"This really is an innovative approach, but I'm afraid
we can't consider it. It's never been done before."

Existing investment

oot

Mainframe

New capabilities need to work with
existing investment roservics

new ayes

gxish n
\ L poestment’

As we move to services architectures,
we push the complexity to the space
between our Services.

@christianposta

@christianposta

Application integration

* Orchestrate calls across multiple microservices
 Calls in parallel, sequential, etc

 Aggregate, combine, transform, split, on “messages”

 Deal with errors, unexpected results

@christianposta

Application integration

 Deal with atomicity / consistency issues

« Message idempotency / message de-dupe
 APIs / DDD anti-corruption layers / adapters
 Tie in with existing “backend systems”

* Deal with making calls over the network

@christianposta

Application networking

Service discovery
Load balancing \[\QQ&

Timeouts

($
Retries \OQQ Y
Circuit breaking @Q’\)L O\\QOC(Q/ \MDQ/P
Rate limiting ¢ NZ(

@christianposta

Application safety and correctness in a
distributed system is the responsibility of
the application teams.

@christianposta

Integration is part of the
application-development process.

@christianposta

Meet Ballerina

http://ballerina.io

Barnerina

Ballerina is...

* A new language purpose-built for creating services/APIls and
integrating with existing investments/services

« Built by WSO2

« Static, strong typing with language constructs that make
services and service interaction first-class citizens

« Strong focus on network awareness

@christianposta

Ballerina is...

« Built around a “sequence-diagram” mental model
 Round-trip development as a first-class citizen
* Native concurrency model

« Solves problems around application integration like:

Quickly build APIs based on OAPI
Reusable protocol / backend adapters
Long-running execution with checkpointing
Stream based processing

» Service call orchestration

* Aggregating responses

« Data security

+ Transactions, compensations

@christianposta

import ballerina/http;
import ballerina/io;

listener http:Listener recommendationListen = new (8080);
?
service sayhello on recommendationListen

http:ResourceConft Li;

methods: [B

path:

resource function showRecommendations(http:Caller caller, http:F

http:Response response = new;
response.setTextPayload(
_ = caller —> respond(response);

st request)

Edit J% ® Q X

.
& sayhello
£ showRecommendations
() O
caller Default
request J
-—-]
respond(response)
caller Default

% contentBasedRouting

L cbrResource
® o [}
outboundEP Default locationEP
req |
=3
fals
(jsonMsg is json)
true
==

respond(clientResponse)

false———
(nameString == "sanFranci...

true
post("/v2/594e018¢11000...

If false——————
(clientResponse is http:Re...

true

respond(res)

false——
(result is error)
true

respond(res)

false——
(result is error)
true

=3

o

fals
(result is error)
true

So: what about application networking?

@christianposta

Application networking

« Service discovery

* Retries

« Timeouts

 Load balancing

 Rate limiting

 Thread bulk
heading

» Circuit breaking

@christianposta

Edge/DMZ routing
Surgical, per-request
routing

A/B rollout

Traffic shaping

Internal releases / dark
launches

Request shadowing

Fault injection

adaptive, zone-aware
Deadlines

Health checking

Stats, metric, collection
Logging

Distributed tracing
Security

“Microservices” patterns

NETFLIX |

« Netflix Hystrix (circuit breaking / bulk heading)

« Netflix Zuul (edge router)

* Netflix Ribbon (client-side service discovery / load balance)
* Netflix Eureka (service discovery registry)

« Brave / Zipkin (tracing)

* Netflix spectator / atlas (metrics)
@christianposta

@christianposta http://bit.ly/application-networking

Screw Java - I'm using Node]S!
JavaScript is for rookies, I use Go!

But python is so pretty!

[prefer unreadability... Perl for me!

@christianposta

In practice, operability of our services
becomes a top priority very fast

@christianposta

Let’s optimize for operability

@christianposta

Meet Envoy Proxy

http://envoyproxy.io

& Cluster
envoy ﬂroupf

Dow nskaam] III\

LS/LL,]\

| RHecs

——~

AP streamn

As a service-instance proxy

=
=

|
L

@christianposta

Time for definitions:

A service mesh is a distributed application infrastructure
that is responsible for handling network traffic on behalf
of the application in a transparent, out of process manner.

A service mesh helps to solve problems related to
resiliency, security, observability, and routing control.

@christianposta

Service mesh technologies typically provide:

« Service discovery / Load balancing

« Secure service-to-service communication
« Traffic control / shaping / shifting

« Policy / Intention based access control

« Traffic metric collection

« Service resilience

@christianposta

Open-source, service-mesh implementations

* Istio.io A 1sto
http://istio.io

e Consul Connect (- Consul

http://consul.io

 LinkerD 5S1LINKERD

http://linkerd.io

@christianposta

N

ot service CJ

| —)ppllcml"og@;a)r.ou Banerina

n+ yotioN .
Come al\ O(U/\eg Aol (v

L % "
§erul£€ M‘ goeur ™Y <

envoy
p resiliend®s oL
'\Q‘h‘) . Istio

Po\iey :Dio ef::; balw\é"""}
(o\el ‘k

[sn’t there overlap??

 Service discovery
 Load balancing

* Timeouts

* Retries

e Circuit breaking

* Rate limiting

* Distributed tracing
* ...Some others ...

@christianposta

Key takeaways:

Leverage the service mesh for key, consistent application-
networking behavior.

Develop a workflow for application teams that includes
configuration of the service mesh as part of the application.

Opt for language-specific implementations when the general
service mesh solution doesn’t adequately solve a spec1f1c
problem. A A

@christianposta %

Key takeaways:

Resist the urge to put application-integration logic into the
service mesh.

Understand the “why” of service mesh and seek to keep the
boundary delineated

@christianposta

Customer [preference

http://bit.ly/istio-tutorial

atmww-l-i1
v\

'mmmm:
vl

Thanks!

Twitter: @christianposta
Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

Follow up links:

» http://ballerina.io

» http://istio.io

* http://envoyproxy.io

» http://developers.redhat.com/blog

* http://blog.christianposta.com/istio-workshop/slides/
« http://blog.openshift.com

* https://www.redhat.com/en/open-innovation-labs

BTW: Hand drawn diagrams made with Paper by FiftyThree.com ©

