
Everyone Gets a Data Plane!
Multi-Networking Kubernetes with the
NPWG Spec
December 2018
Dan Williams & Doug Smith
Red Hat, Inc.

Doug Smith
● Member of the NFV Partner Engineering

team in Red Hat’s Office of the CTO
● Focus on analyzing gaps in containerized

workloads for NFV, including container
networking & orchestration (e.g. Kube &
OpenShift)

● Blog: https://dougbtv.com

@dougbtv
Dan Williams
● Member of Networking Services Team at

Red Hat
● Focus on container networking and

orchestration in OpenShift, Kubernetes, CNI,
and related projects

● Co-chair of Kubernetes SIG Network, lead of
the Network Plumbing Working Group, CNI
maintainer

@dcbw

https://dougbtv.com

● About the Network Plumbing Working Group
● Overview of the Multi-Network specification
● Multi-networked pods with a CNI meta plugin
● Key concept overview
● Configuration overview
● What’s next?

AGENDA

WHAT IF YOU NEED A DATA PLANE IN
KUBERNETES?

Some REST API Pod
eth0

everything.

Your networking workload
eth0 ?

It’s straightforward for web scale. But what about for special
networking workloads?

Control plane.

Data plane.

WHAT KIND OF WORKLOADS DO WE MEAN?

● High bandwidth
● Specific latency requirements or QoS
● Segregated networks
● Legacy network resources

NETWORK PLUMBING
WORKING GROUP

Red Hat helped found the group during Kubecon 2017 to address lower level networking
issues in Kubernetes

● Currently focused on multiple network attachments using an out-of-tree solution.
● Gather use-cases and propose standard specification
● Provide reference CNI plugin implementing standard specification
● Refine proposals/PoCs internally before sending up to Kubernetes SIG-Network
● Plan to expand to further advanced networking use-cases
● Meets every other Thursday opposite SIG-Network (same Zoom channel)
● Meeting recordings on YouTube.

Network Plumbing Working Group
An informal offshoot of Kubernetes SIG-Network

https://docs.google.com/document/d/1oE93V3SgOGWJ4O1zeD1UmpeToa0ZiiO6LqRAmZBPFWM/edit
https://www.youtube.com/channel/UCeWfyg-6fnHMT47i0EdyLGQ/videos?shelf_id=0&view=0&sort=dd

{impetus for
formation}

Through ‘17

What’s been happening with multi-networking?

Network
Plumbing
Working Group
formed at
KubeCon AustinDec ‘17

Began work on de-facto
standard for multiple
network attachments
under the NPWG
umbrella.

 Early ‘18

Reference
implementation
of standardized
CRD with Multus
CNIMay ‘18

A brief history of how our upstream collaboration has evolved.

Version 1 of the Network
Plumbing Working Group
de-facto standard
released.

 Summer ‘18

Goals:

● Short-term solution for multiple network attachments per pod
● No changes to the Kubernetes API or expected network behavior
● Light-weight standard for network attachment definitions and status reporting
● Specify behavior of CNI "meta-plugins" for multiple network attachments
● Coordinate with Resource Management WG on network resource management

NPWG Multi-Network Specification v1

https://github.com/K8sNetworkPlumbingWG/multi-net-spec/blob/master/%5Bv1%5D%20Kubernetes%20Network%20Custom%20Resourc
e%20Definition%20De-facto%20Standard.md

Something actually happens...

https://github.com/K8sNetworkPlumbingWG/multi-net-spec/blob/master/%5Bv1%5D%20Kubernetes%20Network%20Custom%20Resource%20Definition%20De-facto%20Standard.md
https://github.com/K8sNetworkPlumbingWG/multi-net-spec/blob/master/%5Bv1%5D%20Kubernetes%20Network%20Custom%20Resource%20Definition%20De-facto%20Standard.md

Overview:

● Pod annotation to select network attachments
 k8s.v1.cni.cncf.io/networks: foobar

● Pod annotation reporting network attachment status
 k8s.v1.cni.cncf.io/network-status: |
 {
 "name": "foobar",
 "interface": "eth5",
 "ips": ["1.2.3.1/24", "2001:abba::2230/64"],
 "mac": "02:11:22:33:44:54",

 },

● Custom Resource Definition (CRD) describing network attachments
 apiVersion: "k8s.cni.cncf.io/v1"
 kind: NetworkAttachmentDefinition
 metadata:
 name: foobar

● Requirements for CNI Delegating Plugins ("meta plugins")

NPWG Multi-Network Specification v1

● Go client code for the NPWG CRD object
● Admission controller for CRD and annotation validation
● In-progress/upcoming

○ Access control for pod network annotations
○ Go library code for selection/status annotations

NPWG Additional Components

MULTI-NETWORKED PODS
WITH A CNI META PLUGIN

https://github.com/Intel-Corp/multus-cni

https://github.com/Intel-Corp/multus-cni

THE PROBLEM

Kubernetes
Master/Node

Pod A
eth0 flannel

#1 Each pod only has one
network interface

Kubernetes
Master/Node

#2 Each master/node has only
one static CNI configuration

so.
static.

THE SOLUTION

Kubernetes Master/Node

Static CNI configuration points
to Multus

Kubernetes
Master/Node

Each subsequent CNI plugin, as called by Multus,
has configurations which are defined in CRD

objects

Pod C
eth0 net0

flannel macvlan

I’d like a flannel interface and a
macvlan interface please.

flannel macvlan

CRDs

Sure thing bud, I’ll pull up the
configurations stored in CRD objects.

Pod annotation

WHAT MULTUS DOES

Pod
eth0

Pod
eth0 net0flannel flannel

(default)
macvlan

Pod without Multus Pod with Multus

Kubernetes

Multus CNI

Kubernetes

flannel CNI macvlan CNIflannel CNI

KEY CONCEPTS

Pod
eth0 net0

Pod
eth0

Default Network
Pod-to-pod communication is always available.

flannel Dataplane

Default network Sidecar/secondary
networks

CRDs - Custom Resource Definitions
A way to customize the Kubernetes API to store data for applications.

Custom Resource Definition: Fruit

Name: Lemon
Flavor: Sour
Color: Yellow

Name: Apple
Flavor: Sweet
Color: Red

Name: Kiwi
Flavor: Sweet
Color: Green

Custom Resources

Kubernetes
API

An App

The specification uses
annotations to call out a list of
intended network attachments
as “sidecar networks”

Standardized CRD

apiVersion: v1
kind: Pod
metadata:
 name: pod_c
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 { "name": "control-plane" },
 { "name": "data-plane" }
]'
spec:
 containers: [...]

Name: data-plane
Namespace: default
Labels: <none>
Annotations: <none>
API Version: cni.cncf.io/v1
Args: [{ "master": "eth0", "mode": "bridge", ...
Kind: Network
Plugin: macvlan
Metadata: [...]

Pod annotations

CRD Object
CNI network configurations are
packed inside CRD objects.

M
ap

s
to

...

As created by the Network Plumbing Working Group.

CONFIGURATION OVERVIEW

You pack up a JSON CNI
configuration and create it as a
CRD object. We’ll reference the
name when we create a pod that
wants to use this configuration.

How do I add a configuration for an additional
interface?

$ $ cat <<EOF | kubectl create -f -
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: macvlan-conf
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth0",
 "mode": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }'
EOF

Add a comma delimited list of
names from the previously
loaded configurations, and
additional interfaces will be
attached to each pod
referencing this annotation.

How do I start a pod with an additional
interface?

$ cat <<EOF | kubectl create -f -
apiVersion: v1
kind: Pod
metadata:
 name: bothpod
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf
spec:
 containers:
 - name: bothpod
 image: dougbtv/nginx-toolbox
 ports:
 - containerPort: 8080
EOF

eth0 will always be attached to
your “default network” / pod
network, in this case flannel.

What’s the result after I’ve started that pod?

$ kubectl exec -it bothpod -- ip a | grep -A2 "@"
3: eth0@if10: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue
state UP group default
 link/ether 0a:58:0a:81:00:04 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.129.0.4/23 brd 10.129.1.255 scope global eth0
--
 4: net0@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UNKNOWN group default
 link/ether 9e:1d:f5:03:2f:17 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 192.168.1.201/24 scope global net0

Additional interfaces named
netN will attach with the CNI
configuration as defined in each
CRD object.

WHAT’S NEXT?

● Develop proposal and components for Services on additional networks
● Enhanced security for additional networks
● Refinements to the NPWG specification
● Conformance test framework
● Joint efforts on resource management and device plugins

Iteration!

THAT’S WHERE WE NEED YOU!

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

