Do It Live

Measuring Your Applications in Production

Jason Keene
Pivotal Software

Q

CLOUDFOUNDRY

kubernetes

Measuring your workloads as they are
running in a production environment is
invaluable for a developer

Why bother measuring in production?

e Observe your software under load

e See faults as they occur

e Discover patterns of usage of your users
e Debug problems:

» Reproducing the problem in an artificial environment is
too difficult or time consuming
= You simply do not know how to reproduce the problem

Ultimately

Production is Reality

Everything else is at best a proximity

You need to be able to debug problems in production,

but more importantly

Understanding the character of your workloads
is critical to their successful operation.

The more you understand the software you are
running the more successful you will be at running it.

Debugging is not merely the act of
making bugs go away. It is the act of
understanding and gaining new
knowledge about the way the
system works.

- Bryan Cantrill (goto; 2017)

Solve Problems
&&

Understand our Software

Method
Tools
Practice

Method
Tools
Practice

Ask Questions, Get Answers

Space of

Possible
Causes

A Question Divide the
Possibility Space

An Answer Eliminates
Possibilities

Space of

Possible
Causes

Space of

Possible
Causes

Space of

Possible
Causes

It is Critical that you are
confident in your Answers

85%

85%

85%
85%

85%

85%
85% 61%
85% 72%

85% 85%

85%

85%
85% 61%
85% 72%

85% 85%

100%

100% 44%
85% 44%
85% 52%
85% 61%

85% 72%

85% 85%

Where You Think
the Problem IS

®

A

Where It Actually Is I

Just asking a Question doesn't help
if you can not get the Answer

Not having the right tools constrains the
sort of Questions you can ask

Streetlight Effect

THIS IS WHERE YOoU
LOST YOUR WALLET?

NO, I LOST IT IN THE PARK.
BUT THIS IS WHERE THE LIGHT IS.

We need Tools that can give us
Answers to our Questions

Method
Tools
Practice

Hierarchy of Instrumentation

Static and Always On
logs, metrics, distributed tracing

Static and Requires Activation
usdt, tracepoints

Dynamic Instrumentation
ptrace, uprobes, kprobes

We want tools that can answer arbitrary
questions about our software

Intercept any point of execution
Without restarting the process
Read from memory and registers
Collect data across multiple processes and the kernel
With low overhead
And do it all safely

Debuggers are Awesome

._.__- .

- -I.Hll. “ -

ptrace (Process Trace)

e Allows a tracer process to control the execution of a tracee process

= intercept signals

= intercept syscalls

= read and write to registers/memory (including .text)
= single step through the tracee

e Writing to .text allows you to set breakpoints
e When tracer is running the tracee's execution is typically suspended

tracer tracee

Kernel

tracer tracee

Trap is Hit

Kernel

tracer tracee

Kernel

tracer tracee

Kernel

tracer tracee

Kernel

Main Problem with ptrace:

Suspended Execution

Your program is doing no work while it is suspended!
If the tracer is slow to yield back this will cripple a process.

The tracer is usually blocked on user input.

tracer tracee

tracer tracee

logging agent bug

o 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
buf: ol4]8]2]s
read=2 write=7

buf{15] buf{0]

buf&l buf7l

Question:

When the agent is not sending data, what
IS the state of the read and write indices?

func main() {

d := diodes.NewOneToOne(1l<<12, diodes.AlertFunc(func(int) {}))
go func() {

for {

write(d)

}
+H()
for {

read(d)
}

}

func write(d *diodes.OneToOne) {
d.Set(genData)

}

func read(d *diodes.OneToOne) {
d.TryNext ()

}

func init() {
cmd = exec.Command("dlv", "attach", os.Getenv("PID"))
childIn, = cmd.StdinPipe()
childOut, @ = cmd.StdoutPipe()

}

func main() {
cmd.Start ()

// resume tracee
fmt.Fprint(childIn, "continue\n")

// read, filter and report data
go reader(childOut)

for {
// sample data periodically

}

time.Sleep(time.Second) const sample = break main.write

cmd.Process.Signal(os.Interrupt) continue
print d.writeIndex - d.readIndex
if timeToExit() { clearall
fmt.Fprint(childIn, exit) continue
return)
} const exit = clearall
quit

fmt.Fprint(childIn, sample) no

~

£ .Strocee 3 PlID="${pgrep troces)” go run n-al.n.-gu-l

This only works for
sampling at a low frequency

f .fEracee f PID=S{pgrep tracee) go run main.go I

controller

Lots of IO to share data
between processes

«

tracer tracee

controller

tracer tracee

Lots of overhead jumping
in and out of the kernel

Is There a Better Way?

controller

tracer tracee

¥ Kernel

tracee

Kernel

BPF can do this!

What is BPF?

e BPF is a custom instruction set that you can use to build programs
and inject them into the kernel.

e The kernel validates the program to make sure it is safe and then
compiles it for your architecture so it runs fast.

e You can then attach these programs to various events.

e |t was originally created for programs that do packet filtering with
little overhead, hence the name (Berkeley Packet Filter).

e For example:

tcpdump src 10.5.2.3 and dst port 3389

What can your BPF program do?

e Arithmetic/Logic/Branching
e Load/Store (restricted)
e Call user defined bpf functions
e Call various helper functions
= Aggregate and store data in maps
= Read stack traces for kernel and user land
= Manipulate packets
= Get time/rand data/current pid/task/etc
= Read/write to certain places in memory
= Much more!

What can your BPF program not do?

e Your program must have a finite execution
e | oops are not allowed
= You can jump forward
= You can jump back if it does not form loop

= Bounded loops might be allowed in the future so you do not have to
manually unroll loops

e Access to locks are not permitted (might be allowed in the future)
e Access to arbitrary memory is not permitted

= You can load/store the memory of the BPF program and access
memory in other ways

e No illegal instructions
e Unreachable blocks are not allowed

maps & event

buffers sources

BPF program is compiled

¢

event

maps &
sources

buffers

BPF program is loaded,
verified, and compiled
to native code

maps & event
buffers sources

BPF program is then

attached to event sources

¥

maps & event

buffers sources

BPF program is then ran
to handle events

maps & event
buffers sources

It can then write data into memory
that is shared with the tracer

Y

maps & event

buffers sources

Event Sources

User Space

e uprobes - dynamic
e usdt - static (uses uprobes)

Kernel

e kprobes - dynamic
e tracepoints - static

Other

e sockets

o {C

e perf events
e etc

uprobes allows you to trace any
instruction in user land with much
less overhead than ptrace

handler

handler

USDT

e Tracepoints that are defined in advance by the developer
e They are typically used as tracing landmarks that are stable across time
e Can report arbitrary data when they fire

= Kind of like logging but without always paying the performance cost
e Supported in most language runtimes (Java, Python, Node, Ruby)

= This allows you to trace functions in dynamic languages by attaching
to probes such as function__entry and function__return.

e Implemented in linux using uprobes

How do you write BPF programs?

BCC bpftrace

github.com/iovisor/bcc github.com/iovisor/bpftrace

BCC (BPF Compiler Collection)

e BCCis a compiler for BPF programs that are written in C

e |t also assists with interacting with your BPF programs from user land
e |tisimplemented as a library (libbcc.so)

e This library has a lot of awesome functionality and is quite mature

e |t comes with a collection of pre-built tools that are incredibly useful
e |t also comes with bindings for Python and LUA

e Third party Go bindings exist

Linux bce/BPF Tracing Tools

filetop
filelife fileslower
vEiscount vfsstat

cachestat cachetop
destat desnoop
mountsnoop

trace
argdist
funccount
funcslower
funclatency
stackcount
profile

V

btrfsdist
btrfsslower
extddist extdslower
xfsdist xfsslower
zfsdist zfsslower

mdflush

biolatency bitesi:ze

opensnoop c¢* java* node* mysqgld_gslower gethostlatency Other:
statsnoop php* python* bashreadline memleak capable
syncsnoop ruby* sslsniff
ucalls uflow syscount
ugc uocbjnew killsnoop
ustat uthreads
| execsnoop
idpersec
l Applications l v / pep
p. cpudist
N System Libraries 4 / runqglat runqglen
¥ deadlock detector
\ 5 ¥ System Call Interface / cpuunclaimed
VFS Sockets Scheduler 4 /
3 offcputime
File Systems TCP/UDP 4 — — wakeuptime
Volume Manager IP Virtual \ offuaketine
Block Device Interface Ethernet Memory “\ softirqgs
f 4 Device Drivers oomkill memleak
I slabratetop
hardirqgs ttysnoop
tcptop tcplife tcptracer ——
tcpconnect tcpaccept |
tcpconnlat tcpretrans llcstat >
. CPU
biotop biosncop profile —»

uprobe demo

func f() {
atomic.AddUint64 (&count, 1)

}
func main() {
for {
£()
}

bpf_text — r mimnn
BPF ARRAY(count, u64, 1);

int do_trace() {
count.increment(0);
return 0;

i

b = BPF(text=bpf text)
b.attach uprobe(name=sys.argv[l], sym="main.f", fn name="do trace")

count = b["count"]

while True:
time.sleep(1l)
print("{:15,} ops/s".format(count[0].value))
count.clear()

f uprobes $ uds Stroce. py ${which u:lr-:lhm.}l

usdt demo

var (

probes = salp.NewProvider("usdt")
entry = salp.MustAddProbe(probes, "entry")
exit = salp.MustAddProbe(probes, "exit")
)
func f£() {

entry.Fire()
defer exit.Fire()
http.Get("https://www.google.com/search?g=" + randStr())

}

func main() {
salp.MustLoadProvider (probes)
defer salp.UnloadAndDispose(probes)

for {

£0)
}

BPF ARRAY(start, u64, 1);
BPF_HISTOGRAM(latency, u64);

int trace entry() {
u64 ts = bpf ktime get ns();
int zero = 0;
start.update(&zero, &ts);

return 0;

}i

int trace exit() {
u64 *tsp;
int zero = 0;

// fetch timestamp and calculate delta

tsp = start.lookup(&zero);

if (tsp == || *tsp == 0) return 0; // missed start
u64 delta = (bpf ktime get ns() - *tsp) / 1000000;

// store as histogram
latency.increment (bpf log2(delta));
start.delete(&zero);

return 0;

}i

u = USDT(pid=int(sys.argv[l]))

u.enable probe(probe="entry", fn name="trace entry")
u.enable probe(probe="exit", fn name="trace exit")

b = BPF(text=bpf text, usdt contexts=[u])

try:
time.sleep(99999999)

except KeyboardInterrupt:
b["latency"].print log2 hist("milliseconds")

DeuCqRF INEoF AnBriniPt
clprEbTefWsEkzCsFig
JAFQndmeQolStRIphY jg »
PyqoBuf TPGHKRZgbwl Yy »
VARZ FMb jWBakydoVdrt »
zrl 1 BEUGL bk I pBL jke »~
g erthThyi sGMO5 hoka
AN TuYhINSER FUTLS &
HODG j zADs0Y cHIWYeYsl »
vl ymutZFEImE1NpmlShl ~
UL cuswezell b QO0ERhEN ~
EghABTENIYIMzQfob TPz »
pli0)BgFsNYAAARYUKN]
w5 qoul HUE s FEFHBRrh
whilloz cR 1 QLEN Imermazl #
CLIY)FoVFBLKPemfFuts -
i MnDgF £ rFRBEDGLT
rentBidt Xz fdtCSRIPes
VL JeOmi TIgneLKYmX[xA
aPnray el Sy BdMu
GAurbbaYHHMARFRLMILc
beXkeEMfEpDHAMpR1 1] +
raTrbnntHFEIMFrawdh »
LspaShaF | TRonFENPSoy
db IMOPE | wonDXxowFidir «
soi vRoBybgABQCi tlhal »
hFdERAXV s FTyY smi (idy o+
HEKBEnBAELOr1hielrkdk

} sudo . Stroce.py ${pgrep tsdt)

bpftrace

simplifies writing these programs

uprobe:/path/to/bin:"main.f"
@ = count();

}

interval:s:1 {
print (@);
clear(Q);

{

bpf_text - r miuon
BPF_ARRAY(count, u64, 1);

int do trace() {
count.increment(0);
return 0;

}i

b = BPF (text=bpf text)
b.attach uprobe(name=sys.argv[l],
sym="main.f", fn name="do trace")

count = b["count"]

while True:
time.sleep(1l)
print("{:15,} ops/s".format (
count[0].value))
count.clear ()

usdt:/path/to/bin:entry { bpf text = r"""

BPF_ARRAY(start, u64, 1);

@start = nsecs; BPF HISTOGRAM(latency, u64);
} int trace_entry() {
u64 ts = bpf ktime get ns();
int zero = 0;
USdt° /path/to/bln'eX1t { start.update(&zero, &ts);
@ = hist(nsecs - @start); ,, ot
delete(@start); ,
int trace exit() {
} u64 *tsp;
int zero = 0;

// fetch timestamp and calculate delta

tsp = start.lookup(&zero);

if (tsp == || *tsp == 0) return 0; // missed start
u64 delta = (bpf ktime get ns() - *tsp) / 1000000;

// store as histogram
latency.increment (bpf log2(delta));
start.delete(&zero);

return 0;

}i

nuon

u = USDT(pid=int(sys.argv[l]))

u.enable probe(probe="entry", fn name="trace entry")
u.enable probe(probe="exit", fn name="trace exit")

b = BPF(text=bpf text, usdt contexts=[u])

try:
time.sleep(99999999)

except KeyboardInterrupt:
b["latency"].print log2 hist("milliseconds")

sysdig

system tap
Ittng

dtrace for linux
ktap

ply

USDT
uprobes
perf events
tracepoints
PMCs
Kprobes

nerf

trace compass
catapult
trace-cmd
kernel shark
ftrace

ptrace

BCC bpftrace

github.com/iovisor/bcc github.com/iovisor/bpftrace

docker

cgroups
namespaces
seccomp

bpftrace

ebpf
uprobes
kprobes
tracepoints
perf_events

¥ Intercepting at any point of execution

¥ Without restarting the process

¥ With as low overhead as possible

¥" Read from memory and registers

¥ Collect data across multiple processes and the kernel
¥ And do it all safely

Method
Tools
Practice

We need to Deploy a Container to
Probe our Applications

github.com/jasonkeene/towel

R0MSOUTH PAF docker image
daemonset
kubectl plugin

spec:

share host pid namespace
hostPID: true
containers:
- name: towel
image: jasonkeene/towel
securityContext:

run as root
privileged: true

volumeMounts:

name: sys

mountPath: /sys

name: libmodules
mountPath: /lib/modules
name: varlibdocker
mountPath: /var/lib/docker
name: varrun

mountPath: /var/run

volumes:
kernel/debug/tracing
- name: sys
hostPath:
path: /sys

kernel headers
- name: libmodules
hostPath:
path: /lib/modules

container file systems
- name: varlibdocker
hostPath:
path: /var/lib/docker

docker.sock
- name: varrun
hostPath:
path: /var/run

bash®

This runs as root!

Make sure you delete the daemonset when it is no longer needed.
Also, put the daemonset in a namespace that is restricted.

kind: Role
apiVersion: rbac.authorization.k8s.io/v]
metadata:
namespace: secret-namespace
name: exec-towel
rules:
FoL
- apiGroups: [""]
resources: ["pods/exec"]
verbs: ["create"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

namespace: secret-namespace

name: jane-exec-towel
subjects:
- kind: User

name: jane

apiGroup: rbac.authorization.k8s.io
roleRef:

kind: Role

name: exec-towel

apiGroup: rbac.authorization.k8s.io

How to Get Started?

tutorial at:
github.com/jasonkeene/towel

With these tools we can

Ask Questions, Get Answers

and

Better Understand our Systems

Thank You!

Jason Keene
Pivotal Software
k8s slack: @jasonkeene
github.com/jasonkeene

