
KubeCon + CloudNativeCon
Seattle

Distributed Tracing in 
Serverless Systems

Nitzan Shapira, Epsagon



Nitzan Shapira (@nitzanshapira)

Software engineer > 12 years

Co-Founder, CEO at Epsagon

Tel Aviv

2

> whoami



What is serverless? How is it different?

What is observability for serverless?

How can distributed tracing help?

How will it help my job?

3

Things to discuss



4

[Compute-as-a-Service]
FaaS: Function-as-a-Service
CaaS: Container-as-a-Service
+
Managed services (APIs)
=
Don’t manage infrastructure
Focus on business logic

What is serverless?



5

Why serverless?

Pay-per-use: reduces cloud compute cost by 90%

Out-of-the-box auto-scaling

DevOps à LowOps

++Developer velocity

Focus on business logic – iterate faster

Server Utilization



6

The limitations of FaaS

Limited memory Limited running time

Cold startsStateless

+ concurrency limit

+ some others…



7

The properties of serverless applications

Serverless is micro-services

Serverless applications are
- Highly distributed

- Highly event-driven

Utilizing managed services via APIs is key



A real example – HSBC

8

Source: re:Invent 2018



9

The challenge in serverless

SIMPLE COMPLEX

Yan Cui



10

What the community thinks

2018 Serverless Community Survey, serverless.com, July 2018

2017 results



11

Observability – why do we need it?

Track system health Troubleshoot and fix Optimize performance and cost



12

Observability in serverless

Let’s go one by one



13

Track system health

System == Functions ?



14

Functions are important

- Errors
- Timeout
- Out-of-memory
- Cold start



15

Track system health

System > Functions !Serverless != Functions



16

Track system health

System > Functions !

Functions
APIs
Transactions



17

Troubleshoot and fix

Functions are not enough
Need: track asynchronous events

e



18

Transactions



19

Tracing asynchronous invocations



20

Tracing asynchronous invocations



21

Tracing asynchronous invocations



22

Distributed tracing

…a trace tells the story of a transaction or 
workflow as it propagates through a 
(potentially distributed) system. Distributed 
tracing is a method used to profile and 
monitor applications.



23

Distributed tracing

Jaeger



24

Implementing distributed tracing

Manual tracing/instrumentation

Before/after calls

At the end of each micro-service

High maintenance

High potential of errors



25

Serverless apps are very distributed

Complex systems have thousands of functions

What about the developer velocity?



26

Can it be done differently in serverless?



27

Automation can help to keep up with the 

development speed of serverless



28

Example



29

Example



30

Monitoring serverless

Limited memory Limited running time

Cold startsStateless



31

Time is $$$



32

Where do we spend the most time?

Our own code API calls



33

Serverless cost crisis
A real-life example

$$$$$$$$$$$$



34

Scanning functions

Scanning CloudWatch using AWS Lambda

Every 5 minutes, save to RDS

A new Lambda is spawned for every customer’s function

PollSpawn (async)
CloudWatch



35

As time flies…

CloudWatch became highly throttled

Requests took too much time

5K concurrent Lambdas, for 5 minutes,
timing out , every 5 minutes

!!!!



36

Why you should care about external APIs

702ms

e



37

Track service health



38

Business flows

Subscribe

Transfer Payment



39

What should I optimize first?



40

Remember…

Serverless + Distributed Tracing
=

Perfect marriage
(but only if you automate)



nitzan@epsagon.com

@nitzanshapira

www.epsagon.com

Thank you!

mailto:nitzan@epsagon.com

