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> whoami



What is serverless? How is it different?

What is observability for serverless?

How can distributed tracing help?

How will it help my job?
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Things to discuss
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[Compute-as-a-Service]
FaaS: Function-as-a-Service
CaaS: Container-as-a-Service
+
Managed services (APIs)
=
Don’t manage infrastructure
Focus on business logic

What is serverless?
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Why serverless?

Pay-per-use: reduces cloud compute cost by 90%

Out-of-the-box auto-scaling

DevOps à LowOps

++Developer velocity

Focus on business logic – iterate faster

Server Utilization
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The limitations of FaaS

Limited memory Limited running time

Cold startsStateless

+ concurrency limit

+ some others…
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The properties of serverless applications

Serverless is micro-services

Serverless applications are
- Highly distributed

- Highly event-driven

Utilizing managed services via APIs is key



A real example – HSBC
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Source: re:Invent 2018
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The challenge in serverless

SIMPLE COMPLEX

Yan Cui
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What the community thinks

2018 Serverless Community Survey, serverless.com, July 2018

2017 results
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Observability – why do we need it?

Track system health Troubleshoot and fix Optimize performance and cost
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Observability in serverless

Let’s go one by one



13

Track system health

System == Functions ?
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Functions are important

- Errors
- Timeout
- Out-of-memory
- Cold start
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Track system health

System > Functions !Serverless != Functions
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Track system health

System > Functions !

Functions
APIs
Transactions
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Troubleshoot and fix

Functions are not enough
Need: track asynchronous events

e
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Transactions
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Tracing asynchronous invocations
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Tracing asynchronous invocations
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Tracing asynchronous invocations
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Distributed tracing

…a trace tells the story of a transaction or 
workflow as it propagates through a 
(potentially distributed) system. Distributed 
tracing is a method used to profile and 
monitor applications.
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Distributed tracing

Jaeger
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Implementing distributed tracing

Manual tracing/instrumentation

Before/after calls

At the end of each micro-service

High maintenance

High potential of errors
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Serverless apps are very distributed

Complex systems have thousands of functions

What about the developer velocity?
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Can it be done differently in serverless?
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Automation can help to keep up with the 

development speed of serverless
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Example
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Example
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Monitoring serverless

Limited memory Limited running time

Cold startsStateless
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Time is $$$



32

Where do we spend the most time?

Our own code API calls
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Serverless cost crisis
A real-life example

$$$$$$$$$$$$
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Scanning functions

Scanning CloudWatch using AWS Lambda

Every 5 minutes, save to RDS

A new Lambda is spawned for every customer’s function

PollSpawn (async)
CloudWatch
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As time flies…

CloudWatch became highly throttled

Requests took too much time

5K concurrent Lambdas, for 5 minutes,
timing out , every 5 minutes

!!!!
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Why you should care about external APIs

702ms

e
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Track service health
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Business flows

Subscribe

Transfer Payment
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What should I optimize first?
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Remember…

Serverless + Distributed Tracing
=

Perfect marriage
(but only if you automate)
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