
Demystifying Data-Intensive
Systems on Kubernetes

@lenadroid Lena Hall

Data-Intensive Systems

@lenadroid

• Databases
• Caches
• Stream-processing systems
• Any system that works with data

Data-Intensive Systems

• Databases
• Caches
• Stream-processing systems
• Any system that works with data

… or other non-trivial, not necessarily stateful systems

@lenadroid

@lenadroid

Big Difference

Stateless microservice

vs

Distributed stateful system, or other non-trivial system

on Kubernetes

@lenadroid

Why should you care

• Software Engineers and Solution Architects

• Engineering Managers and CTOs

• Maintainers and Contributors of Distributed Systems

@lenadroid

Talk Spoilers

• DECISIONS
Making Decisions– is Kubernetes a good choice

• SOLUTIONS
Current state, challenges, and solutions

• FUTURE
The Future of systems on Kubernetes

@lenadroid

Decision Making

Decision (p1, p2, p3, …) = Yes | No
p1 = required guarantees
p2 = existing skills and resources
p3 = acceptable risks
pN = …

@lenadroid

Decision Making Best Practices

? What are downsides and challenges of your current
environment for running your system

? What problems will switch to Kubernetes solve

? What new problems will it create

? How big will increase/decrease in costs be

? What team or process changes will need to happen

@lenadroid

Decision Making Variables

• Ability to afford resources/time to troubleshoot issues

• Requirement to be independent from a cloud provider or
environment

• Consistency/performance/availability/other guarantees

• Readiness to accept possible risks

… many more

For example:

@lenadroid

Examples of motivation and challenges

Common motivation

• Workload portability
• Convenience of deployment, operations, automation
• Independence from a cloud provider or environment
• Open and rapidly developing, rich ecosystem
• Flexibility and cost savings
• Faster start-up times
• Extensible and open API
• To benefit from existing Kubernetes infrastructure

Examples:

@lenadroid

Common challenges

• Limited options for running certain workloads
• Limited examples of production-ready architectures
• Limited time, or resources to support the system
• Limited functionality/integrations for storage/networking
• Stability, reliability, etc. of existing solutions
• Need to build the solution almost from scratch
• Need to gain new skills to troubleshoot new environment

Examples:

Decision Making Best Practices

How to determine possible risks and challenges?

@lenadroid

Decision Making Best Practices

Understand what Kubernetes can or can’t do.
What it is or isn’t responsible for.

How to determine possible risks and challenges?

@lenadroid

Decision Making Best Practices

How to determine if Kubernetes can satisfy
guarantees required by my system?

@lenadroid

Decision Making Best Practices

Learn what abstractions and instruments
Kubernetes and its API have to guarantee or
implement your system requirements.

How to determine if Kubernetes can satisfy
guarantees required by my system?

@lenadroid

@lenadroid

To make the right decision is to
understand how things work

@lenadroid

What Kubernetes can and can’t do with built-in objects

Pod Job Deployment Stateful Set

and more…

@lenadroid

Stateful Systems == Stateful Sets?

@lenadroid

What if none of primitive Kubernetes
types fully work for our systems?

@lenadroid

Things that need special care

@lenadroid

UP AND RUNNING

! =
OPERATING CORRECTLY

@lenadroid

Example: Scaling Clusters

From

To

ü Manually assign partitions to new nodes

ü Rebalance data to maintain even load

ü Apply cluster configuration to new nodes

@lenadroid

Example: Safe Cluster Restarts

ü Restart one node at a time

ü Wait for each node to catch up

? Are there any under-replicated partitions?

? Is the cluster in healthy state?

@lenadroid

Custom Resource Definitions

CRDs

@lenadroid

Custom Controllers

@lenadroid

OPERATOR

CRD + Custom Controller

@lenadroid

Controller

Queue that the Controller subscribes to

Informer

Anatomy of an Operator

Resource Structs/Types

CRD

@lenadroid

Running a TensorFlow Job with
KubeFlow and tf-job Operator on Azure
Kubernetes Service

Example

Behind the scenes

tf-operator

@lenadroid

Ways to build an Operator

Example Operators

osdir.com/apache-flink-development/msg09830.html
Apache Flink Operator

Apache Spark Operator
github.com/googlecloudplatform/spark-on-k8s-operator

TensorFlow Operator
github.com/kubeflow/tf-operator

Apache Kafka/Confluent Operator
confluent.io/confluent-operator

Apache Cassandra Operator
github.com/instaclustr/cassandra-operator

@lenadroid

Awesome Operators

/operator-framework/awesome-operators

@lenadroid

@lenadroid

Takeaways

Understand your goals, benefits, and challenges

Define “correct” operation for your system

Know when to use existing core Kubernetes types,
and when to create custom resources

@lenadroid

What’s next?

@lenadroid

Future

• More Operators

• Better Operators

• Easier to write Operators

@lenadroid

Future

• Better workload portability

• More focus on writing your apps

• More automation

@lenadroid

• Multi-Cloud becomes reality

• More independence

Future

Share your data-intensive scenarios

bit.ly/data-k8s

@lenadroid

Resources

bit.ly/statefulsets-gotochgo

Lena’s talk from GOTO Chicago 2018 - running a distributed
database on Kubernetes, specifics of Stateful Sets, with
examples of using Cassandra and Spark:

bit.ly/lena-blog

Lena’s blog and other talks:

bit.ly/lena-talksand

@lenadroid

ü Works on Azure at
ü Lives in Seattle
ü F# Software Foundation Board of Trustees
ü Organizes @ML4ALL
ü Program Committee for Kafka Summit
ü Has a channel: /c/AlenaHall

Lena Hall lenadroid

Thank you!

