
Defining Multi-Tenant Access
Controls for a Cluster

Anund McKague | Senior Developer | Anund on Slack

Multi-Tenant

Team has access
to a piece of a
cluster isolated
from other teams

Authn/Authz use cases

Some
background on
our clusters

Isolated locations
PaaS customers choose where to
place their resources

Few things are restricted
Customers can create nearly
anything within a namespace

Kube API only
All interactions go through Kube
API

Kubernetes based v2

Users access their namespace,

and its objects

provisioning the same resources

in separately available clusters

in dev, staging, and prod

Users access their service,

and its resources

in multiple availability zones

across multiple regions

in dev, staging, and prod

Existing PaaS

Let users in

and their team

and their CI and automation.

Create their own namespace

Deny requests based on content

So, how do we

Let users in
Static RBAC

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: paas:ops:view

rules:

- apiGroups:

 - "ops-gateway.voyager.atl-paas.net"

 resources:

 - clusterproviders

 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: paas:ops:view

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: paas:ops:view

subjects:

- kind: User

 name: some_user

Their team
RBAC + groups

RBAC for teams

Groups
RBAC with groups as the

subject

Built in groups
Better to avoid reusing built
in groups for internal teams

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: paas:ops:view

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: paas:ops:view

subjects:

- kind: Group

 name: some_team

Their CI and automation
Service Accounts, and Authentication webhooks

CI and automation

Service Accounts
Built in, username +
password for a pod

Existing Services
Should be able to reuse

existing service to service
authn

Webhook
Webhook Token

Authentication can cover
both

Create their own namespace
Custom Resources

 Custom resource permissions

Namespace creator
Control creation of

namespace via a custom
resource

Custom RBAC verb
RBAC resourceName rules
are limited to certain verbs

Business logic
Custom Resource

controller for namespaces
can host access logic

 API server bridge

Existing systems
Allow existing services to

run as if they are in all
clusters

Reacting via watch
Implementing watch lets

clusters react to objects from
existing services

k8s/api-server
Brings in automated authz

and auditing

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: paas:generated:some_service

rules:

- apiGroups:

 - ””

 resources:

 - pods

 verbs: ["get", "list", “claim”]

 resourceNames: some_service

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: paas:generated:some_service

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: paas:generated:some_service

subjects:

- kind: Group

 name: some_team

Deny requests based on
content

Validating webhooks

Validating Webhook Permissions

Add authz context
Combining custom claims

and request contents in
webhooks

Avoid user authz
system:serviceaccount:kube-
system:generic-garbage-colle
ctor also wants in

Webhooks are bad for

User or group permission whitelists

Allowing silent mutation of user

fields

Running expensive or long running

checks

Verifying the contents of object

fields

Performing custom claims

Returning better error messages

when something is wrong

Webhooks are good for

Groups and authn
github.com/atlassian/kubetoken
Is an example of stitching LDAP,
2fa, and group centric
permissions together

Authn

Other
mechanisms

Certs
X509 client certs the API Server validates and
extracts username + group information

OpenID Connect Tokens
Supported by Azure, Salesforce, and Google,
usernames + groups information

Authenticating proxy
Trusted proxy in front of the Kubernetes API using
headers, usernames + groups + extras

Closing

Authorization
RBAC with a few

fancy steps

Authentication
Customizable

authn via webhook

API Server
Bridge existing

systems into Kube

Validation
Everything else

RBAC can’t cover

Thank you!

Anund McKague | Senior Developer | Anund on Slack

