
VMware SIG

Deep Dive into Kubernetes Scheduling
Performance and high availability options for vSphere

Steve Wong, Michael Gasch

KubeCon North America

December 13, 2018

2

Open Source Community Relations Engineer

VMware

Active in Kubernetes storage community since 2015. Chair of Kubernetes

VMware SIG.

GitHub: @cantbewong

Application Platform Architect

VMware

Supports enterprises with architectural guidance, and works closely with

VMware R&D, and member of CTO Ambassador staff.

GitHub: @embano1

Steve Wong Michael Gasch

Presenter
Bios

3

Abstract
Kubernetes allows using topology labels to affect the scheduler’s

placement of pods. This is used to spread pods across availability zones,
while still respecting resource access and availability concerns. When
Kubernetes runs on vSphere, the hypervisor platform also supports an
underlying tier of high availability and automated placement options, for
both control plane and worker nodes. 2 levels of scheduling and resource
management are active.

Currently no automatic scheduling integration occurs, that is, Kubernetes
is not aware of the underlying vSphere topology (sites, affinity groups,
NUMA, etc.).

This session will explain the options to gain better performance, resource
optimization and availability through tuning of vSphere, and Kubernetes
configuration and labeling. This is applicable to any K8s distribution
running on the vSphere stack.

Agenda

4

Kubernetes default scheduling

How it works

Utilizing Zones to improve scheduling

Using vSphere tags to define regions and zones – add cloud provider

What is NUMA?

How to solve potential issues with CPU and memory intensive

workloads

Kubernetes default resource management

How it works

Extending the functionality of Kubernetes

Using vSphere DRS with Kubernetes

High Availability options

Using vSphere HA with Kubernetes

5

Kubenetes scheduling
What does the scheduler do:

As pod are created, they are place in a

queue. (priority available in Beta)

The scheduler continuously pull pods off the

queue, evaluates the pod’s requirements,

and assigns it to a worker node.

6

Kubenetes scheduling
What does the scheduler do:

As pod are created, they are place in a

queue. (priority available in Beta)

The scheduler continuously pull pods off the

queue, evaluates the pod’s requirements,

and assigns it to a worker node.

Placement Decision Stages:

1. Filter out impossible worker nodes

a. Filters are called predicates -

extensible in code with a default list

https://github.com/kubernetes/kubernetes/blob/release-1.12/pkg/scheduler/algorithm/predicates/predicates.go

7

Kubenetes scheduling
What does the scheduler do:

As pod are created, they are place in a

queue. (priority available in Beta)

The scheduler continuously pull pods off the

queue, evaluates the pod’s requirements,

and assigns it to a worker node.

Placement Decision Stages:

1. Filter out impossible worker nodes

a. Filters are called predicates -

extensible in code with a default list

2. Rank remaining nodes

a. ranking is driven by priorities - this

is extensible and configurable with

a default list (e.g. zones)

https://github.com/kubernetes/kubernetes/blob/release-1.12/pkg/scheduler/algorithm/predicates/predicates.go
https://github.com/kubernetes/kubernetes/blob/release-1.12/pkg/scheduler/algorithmprovider/defaults/defaults.go

8

Kubenetes scheduling
What does the scheduler do:

As pod are created, they are place in a

queue. (priority available in Beta)

The scheduler continuously pull pods off the

queue, evaluates the pod’s requirements,

and assigns it to a worker node.

Placement Decision Stages:

1. Filter out impossible worker nodes

a. Filters are called predicates -

extensible in code with a default list

2. Rank remaining nodes

a. ranking is driven by priorities - this

is extensible and configurable with

a default list (e.g. zones)

https://github.com/kubernetes/kubernetes/blob/release-1.12/pkg/scheduler/algorithm/predicates/predicates.go
https://github.com/kubernetes/kubernetes/blob/release-1.12/pkg/scheduler/algorithmprovider/defaults/defaults.go

9

Scheduling modifiers
Node selector

Pod can define rules based on node labels, or based on placement of other pods

constrain which nodes your pod is eligible to be scheduled on

based on <key: value> labels on the node

• Some labels are automatically created, but you can add more

specified as NodeSelector <key: value> in the Pod spec

Affinity

Zones – label nodes with failure zone/regions

Taints / Tolerations – mark nodes with arbitrary labels which could correspond to resource or whatever you like

Admission Controller – a wide variety are available, in validating and mutating classes

Elements that influence pod placements

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/setup/multiple-zones/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

10

Why use Zones?
Kubernetes will automatically spread the pods in replication controllers or

services across zones - to reduce the impact of zone failures

How it works:

• Kubernetes supports running a single cluster in multiple failure zones.

• When nodes are started, labels are automatically added with zone information, based

on tags pre-applied by a vSphere administrator.

• A developer can use these labels to place (selectors and required (anti-) affinity, i.e.

predicate) and distribute (priority) pods

• Since Kubernetes v1.12 volume creation is coordinated with the scheduler

(VolumeZonePredicate and topology-aware scheduling)

Limitations

• Zone spreading is a priority function not a predicate, i.e. it is a best-effort placement. If

the zones in your cluster have uneven available resources due to node variations or

unevenly distributed pre-existing workloads, this might prevent perfectly even

spreading of your pods across zones (same applies to downscaling a deployment).

• The Kubernetes Zones feature is designed to intelligently place Pods on worker

nodes. It does not place the nodes themselves within vSphere failure domains.

11

What is NUMA?
Non Uniform Memory Architecture

12

Why should you care about NUMA?
Memory intensive workloads

Nearly all database servers (e.g. Oracle, MongoDB),

present a workload which will attempt to detect and

consume as much of the system’s memory as possible.

Where does this lead?

Node 0

32GB

Node 1

21GB

2 CPU Nodes – NUMA host

When Linux initially allocates a threads, it is assigned a

preferred node, by default memory allocations come from

this node the thread runs on, but can potentially come

from other nodes with broad performance implications.

This basically comes down to a choice of

whether you would rather have a fast

cache, or a slower cache that is larger.

Many popular application runtimes (e.g.

Java jre) have similar NUMA related

issues.

http://kevinclosson.wordpress.com/2009/05/14/you-buy-a-numa-system-oracle-says-disable-numa-what-gives-part-ii/
https://docs.mongodb.com/manual/administration/production-notes/#mongodb-and-numa-hardware

13

How can NUMA issues be avoided?
Application can be modified / reconfigured?

• The application can be “wrapped” with a numactl

command to interleave memory, or engage other

options

• potentially broad performance effects. (e.g

interleaving get predictable albeit reduced

performance)

• A cgroup aware version (e.g. Java jre v10) can be

deployed

• This is often not available – many were developed

in a pre-container era

Active discussions regarding Kubernetes enhancements going

on now in Resource Management Working Group – please join

in

• See Issue #49964

https://linux.die.net/man/8/numactl
https://groups.google.com/forum/#!forum/kubernetes-wg-resource-management
https://github.com/kubernetes/kubernetes/issues/49964

14

Using a NUMA aware hypervisor to solve issues now

VM composition guidelines

• Assuming you workload fits with the

footprint of a single node, compose worker

node VMs as “walled gardens”

corresponding to node size

• Specify multiple cores per socket, not

multiple sockets

• If you can’t fit in a single node because of

core or memory requirements:

• Minimize socket count to what is

needed to meet requirements

• Don’t assign an odd number of vCPUs

• Never compose a VM larger than the

number of physical cores

A NUMA aware hypervisor can

have IO benefits too

For the vSphere hypervisor, there are advanced vNUMA settings, they rarely need to be changed

from defaults. link

http://frankdenneman.nl/2016/12/12/decoupling-cores-per-socket-virtual-numa-topology-vsphere-6-5/

15

Kubernetes Resource Management
How it works

• Specified and “metered” on a per container basis

• Requests

• What a container is guaranteed to get – won’t be scheduled if not available

• Limits

• Restrictions are engaged when this is exceeded

• Unmanaged by default

• Mechanisms exist to allow a cloud provider or admin to supply a default and over-ride container

specification outside an allowed range

• Supplemental “Metering” at the namespace level

• Resource Quotas can be applied by an administrator at a namespace level

• Requests

• Limits

• Numeric count of allowed instances of objects

https://kubernetes.io/docs/concepts/policy/resource-quotas/

16

Kubernetes Resource Management

What Resource are managed?

Pod + Namespace Level:

• CPU

• Units are millicores, 2000m = 2 cores

• Memory

• Mibibytes, 1000Mi = 1,048,576 bytes

Supplemental “Metering” at the namespace level

• Memory

• CPU

• Object counts

• configmaps

• persistentvolumeclaims

• replicationcontrollers

• secrets

• services

• loadbalancers

https://simple.wikipedia.org/wiki/Mebibyte

17

Kubernetes Default Resource Management

Goals

Efficiency

Fairness

Quotas

Prioritization

Isolation

18

Kubernetes built-in resource management

Enforcement

Run time enforcement at worker node level

CPU

“Compressible” = violation results in throttling

Memory

“Uncompressible” = violation triggers “death penalty” of Pod hosting container

Scheduling time enforcement

ResourceQuota admission controller will refuse to schedule a Pod that would violate limit

After scheduling, running Pods are not affected by quota

Limitations

CPU measurement is in arbitrary units, not uniform across hosts and is a share not a guarantee

19

Where Resource Management enforcement takes place
Kubernetes -> container runtime -> Linux -> hypervisor (optional)

Kubernetes control plane manages desired policy.

Enforcement passes Pod -> container runtime -> Linux OS

Cgroups are used to map Pod CPU and Memory Resources

• Note: Two Cgroups Drivers exist (cgroupfs [default], systemd)

https://github.com/kubernetes/community/blob/f367271772f6616088473a6d99a0f084266d4047/contributors/design-proposals/node/pod-resource-management.md

20

Supplement Kubernetes Resource Management with vSphere DRS
What is DRS?

The vSphere Distributed Resource Scheduler (DRS) is a load balancer for VMs deployed

on a hypervisor cluster. It has advanced features that can provider actual guaranteed

resource reservations, not just shares. It also incorporates health monitoring and IO

awareness

Secure multi-tenant (multi-department) Kubernetes deployments

• with ability to have true guaranteed resource reservations (not just shares)

• with governed sharing of unutilized capacity for improved efficiency

• Allows maintenance with less service level disruption

VM

DRS Cluster

VM VM VM VM VM VM VMVM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Test

VM

K8S Test

VM

K8S Test

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

(Master) (Master) (Master) (Workers) (Worker)

Thank You

Questions?

22

remaining slides not presented to meet time constraints -

included in published deck for reference

23

Open Issues (WIP)

vSphere Cloud Provider should support implement Zones() interface #64021

vSphere Cloud Provider does not work when deployed across Zones with zone-local Storage

#67703

24

Configuring VM affinity rules
Quorum dictates design

VM

Fault Domain A

VM VM VM VM VM VM VMVM

K8S Prod

VM

K8S Prod

V

K8S Prod

VM

K8S Prod

VM

K8S Test

VM

K8S Test

VM

K8S Test

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

VM

K8S Prod

(Master) (Master)

Fault Domain B

(Worker)

VM

K8S Prod

(Master) (Worker)

VM

K8S Prod

(Worker) (Worker)

(VM Anti-Affinity)

Host-VM Rules

25

Extending Kubernetes with vSphere HA
What is HA?

A least 2 hypervisor hosts are required.

HA can be deployed independent of DRS, but the combination of the two in a cluster is

recommended. This will enable load balancing and application of affinity/anti-affinity rules

Deploying HA

Hosts in an HA cluster are health monitored and in the event of a failure, the virtual

machines on a failed host are restarted on alternate hosts.

When running on hardware that supports health reporting, Pro-active failure avoidance

can also be engaged. Example loss of a system cooling fan, degraded storage, or can

trigger automated evacuation before host failure.

26

Configuring HA restart priority
Ensure etcd, control plane starts first, and Prodsystems before others

