
SIG-Testing
Deep Dive Katharine Berry @katharine

Cole Wagner @cjwagner

Slides: bit.ly/2S11nyg

Prow
● CI/CD system built on Kubernetes for Kubernetes
● Executes jobs for building, testing, publishing, and deploying.
● Jobs can be triggered by different types of events and report their status to many

different services.
● Also provides GitHub automation:

○ Policy enforcement.
○ Chat-ops via /foo style commands.
○ Automatic pull request merging.

● Used by:

ProwJobs

Life of a ProwJob

Life of a ProwJob

ProwJobs support many different
● Job types
● Triggering mechanisms
● Execution platforms
● Reporting sinks

Only going to talk about
=> Presubmit
=> `/test all`
=> Kubernetes Pod
=> GitHub status context

Webhook Event Hook Plank Sinker Crier

Life of a ProwJob

GitHub webhook payload: {
 "comment": {
 "body": "/test all",
 ...
 "user": {
 "login": "cjwagner",
 },
 },
 "repository": {
 "full_name": "kubernetes/test-infra",
 ...
 },
 "action": "created",
 "issue": {
 ...
 }
}

Webhook Event Hook Plank Sinker Crier

Life of a ProwJob
 Ingress Rule -> Service -> Deployment

 rules:

 - host: prow.k8s.io

 http:

 paths:

 - path: /*

 backend:

 serviceName: deck

 servicePort: 80

 - path: /hook

 backend:

 serviceName: hook

 servicePort: 8888

apiVersion: v1

kind: Service

metadata:

 name: hook

spec:

 selector:

 app: hook

 ports:

 - port: 8888

 type: NodePort

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: hook

spec:

 ...

 template:

 metadata:

 labels:

 app: hook

 spec:

...

Webhook Event Hook Plank Sinker Crier

Life of a ProwJob

Github Prow k8s cluster

G
it

H
u

b
Ev

en
t

hook

Plugin: trigger

Plugin: configupdate

Plugin: cat

Plugin: ...Plugin: ...Plugin: ...

https://prow.k8s.io/command-help

type PluginClient struct {
GitHubClient *github.Client
KubeClient *kube.Client
Config *config.Config
GitClient *git.Client
SlackClient *slack.Client
OwnersClient *repoowners.Client
Logger *logrus.Entry

}

Webhook Event Hook Plank Sinker Crier

https://prow.k8s.io/command-help

Life of a ProwJob
apiVersion: prow.k8s.io/v1

kind: ProwJob

metadata:

 name: 32456927-35d9-11e7-8d95-0a580a6c1504

spec:

 job: pull-test-infra-bazel

 decorate: true

 pod_spec:

 containers:

 - image: gcr.io/k8s-testimages/bazelbuild:0.11

 refs:

 base_ref: master

 base_sha: 064678510782db5b382df478bb374aaa32e577ea

 org: kubernetes

 pulls:

 - author: ixdy

 number: 2716

 sha: dc32ccc9ea3672ccc523b7cbaa8b00360b4183cd

 repo: test-infra

 type: presubmit

status:

 state: triggered

● `trigger` plugin determines which jobs to
run based on the config.

● Creates a new ProwJob custom resource
for each job ->

● CRDs lets us store state in the
Kubernetes API server.

Webhook Event Hook Plank Sinker Crier

API

Prow Service Cluster

Build Cluster 1

Life of a ProwJob

● Typical lifecycle:

○ New PJ without a pod

=> Create pod

○ Running PJ with completed pod

=> Complete the PJ (Pass/Fail)

○ Complete PJ

=> Ignore

Plank API

API

Job1
Pod

Build Cluster 2

API

Job2
Pod

Job3
Pod

ProwJobs

Pods
Pods

Webhook Event Hook Plank Sinker Crier

● Plank syncs ProwJob CRDs with Pods.

Life of a ProwJob
● Sinker is responsible for garbage collection.

○ Completed ProwJobs: after 2 days
○ Completed Pods: after 30 minutes

Webhook Event Hook Plank Sinker Crier

● Historic results are served from GCS

Life of a ProwJob

● Clients report job status to external services.

Webhook Event Hook Plank Sinker Crier

Prow Service Cluster

Crier API

GitHub
Reporter

Gerrit
Reporter

Pubsub
Reporter

ProwJobs

● Crier detects changes to ProwJob CRDs and
notifies reporting clients.

○ GitHub status context
○ Gerrit comment
○ Pubsub message

Congrats Ben!

LEARN THE TRUTH NOW

Local developer discovers
where bugs hide from e2e
tests. Learn this one WEIRD
trick to his STUNNING results!

Bugs Hate Him!

https://testgrid.k8s.io/sig-testing-canaries#ci-kubernetes-coverage-conformance

https://testgrid.k8s.io/sig-testing-canaries#ci-kubernetes-coverage-conformance

Using e2e coverage

● Build time: make KUBE_BUILD_WITH_COVERAGE=yes

● Run time:

○ Destination: KUBE_COVERAGE_FILE (default: /tmp/k8s-component.cov)

○ Flush interval: KUBE_COVERAGE_FLUSH_INTERVAL (default: 5s)

○ Run any workload of your choosing

● Collect results

Using e2e coverage

kubetest --up --dump-before-and-after --test --down

(using the default GCE provider only)

Using e2e coverage

$ KUBE_BUILD_WITH_COVERAGE=y kind build node
$ kind create cluster
$./kind-coverage-dump.sh 1 before/
$ KUBECONFIG=$(kind get kubeconfig-path) kubetest --test
$./kind-coverage-dump.sh 1 after/

A fun trick

Using e2e coverage

Using e2e coverage

● gopherage merge: merge a batch of coverage files

● gopherage diff: to constrain what coverage counts

● gopherage aggregate: to aggregate across multiple runs

● gopherage junit: to generate testgrid-compatible coverage data

● bazel run //gopherage -- html: generate a browsable report

All use standard go coverage files, so any coverage-related tooling works!

Using e2e coverage

Existing jobs

Conformance
Coverage: 29%

All tests
Coverage: 35%

https://prow.k8s.io/job-history/kubernetes-jenkins/logs/ci-kubernetes-coverage-conformance
https://prow.k8s.io/job-history/kubernetes-jenkins/logs/ci-kubernetes-coverage-e2e-gci-gce

How does any of this work?

How does any of this work?

How does any of this work?

func TestMain(m *testing.M) {

// Get coverage running

coverage.InitCoverage("${name}")

// Go!

main()

// Make sure we actually write the profiling information to disk,

// if we make it here.

coverage.FlushCoverage()

}

How does any of this work?
cat <<EOF > $(path_for_coverage_dummy_test "${package}")

func TestMain(m *testing.M) {

// Get coverage running

coverage.InitCoverage("${name}")

// Go!

main()

// Make sure we actually write the profiling information to disk,

// if we make it here.

coverage.FlushCoverage()

}

EOF

How does any of this work?

create_coverage_dummy_test "${package}"

go test -c -o "$(golang::outfile_for_binary "${package}"

"${platform}")" \

 -covermode count \

 -coverpkg k8s.io/...,k8s.io/kubernetes/vendor/k8s.io/... \

 "${build_args[@]}" \

 -tags coverage \

 "${package}"

How does any of this work?

func InitCoverage(name string) {

destFile = "/tmp/k8s-" + name + ".cov"

flushInterval := 5 * time.Second

flag.CommandLine.Parse([]string{"-test.coverprofile", destFile})

go wait.Forever(FlushCoverage, flushInterval)

}

How does any of this work?

func FlushCoverage() {

tests := []testing.InternalTest{}

benchmarks := []testing.InternalBenchmark{}

examples := []testing.InternalExample{}

var deps fakeTestDeps

dummyRun := testing.MainStart(deps, tests, benchmarks, examples)

dummyRun.Run()

}

How does any of this work?
● Unavoidably complicated bash

● Code generation of unit tests that don’t test anything… also in bash

● Forcing Go to parse fake command lines

● Creating and running empty unit test suites every five seconds

Questions?
Slides: bit.ly/2S11nyg

Get Involved!
● Learn more about Prow and deploy your own!

● Contribute to Prow!

● Use and contribute to Kind!

● Join the SIG-Testing Slack channel!

https://github.com/kubernetes/test-infra/tree/master/prow#documentation
https://github.com/kubernetes/test-infra/blob/master/prow/getting_started_develop.md
https://github.com/kubernetes-sigs/kind
https://kubernetes.slack.com

