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● Open Source Storage Control Plane for Kubernetes
– Extends Kubernetes with CRDs and operators for each 

storage provider
● CNCF Incubation project
● Automates deployment, bootstrapping, configuration, 

provisioning, scaling, upgrading, migration, disaster 
recovery, monitoring, and resource management

What is Rook?



● Implements the Operator Pattern for storage solutions
● User defines desired state for the storage cluster
● The Operator runs reconciliation loops

○ Observe - Watch for changes in state
○ Analyze - Determine differences to apply
○ Act - Apply changes to the cluster

Rook Operators



● Arbitrary types that extend the Kubernetes API
○ look just like any other built-in object (e.g. Pod)
○ Enabled native kubectl experience

● A means for user to describe their desired state

Custom Resource Definitions (CRDs)



Rook Framework for Storage Solutions

● Rook is more than just a collection of Operators and CRDs
● Framework for storage providers to integrate their 

solutions into cloud-native environments
○ Storage resource normalization
○ Operator patterns/plumbing
○ Common policies, specs, logic
○ Testing effort

● Ceph, CockroachDB, Minio, NFS, Cassandra, Nexenta



● Data Platforms
– Ceph, Minio, NFS, Nexenta

● Databases
– CockroachDB, Cassandra 

● “Adding a new Storage Provider to Rook”
– 4:30, Room 611: Jared Watts, Upbound

Storage Providers



Ceph Deep Dive



General Orchestration Approach

● Operator runs ceph commands to initialize and bootstrap 
cluster (cephx auth, crush map, etc.)

● Operator creates Deployments to manage the lifecycle of 
each Ceph daemon
– Init containers will generate the Ceph config
– Ceph daemons will run directly in the main container

● Health of cluster and components is monitored over time and 
corrective actions taken



CephCluster

apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: my-cluster
spec:
  dataDirHostPath: /var/lib/rook
  cephVersion:
    Image: ceph/ceph:v13.2.2-20181023
  dashboard:
    enabled: true
  network:
    hostNetwork: true
  ...

● Ceph CRDs are v1
● Host path 

– Required for persistence 
of the data

● Dashboard
– Web UI to view and 

manage the Ceph cluster

● Network



CephCluster: Version

apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: my-cluster
spec:
  ...
  cephVersion:
    Image: ceph/ceph:v13.2.2-20181023

● Independent from the Rook 
version

● Controls the data plane

● Updated independently from the 
Rook version

● Support lifetime depends on the 
Ceph project

● https://hub.docker.com/r/ceph/ceph/tags/ 

https://hub.docker.com/r/ceph/ceph/tags/


Ceph Version Differences

● Luminous (v12)
– Readonly dashboard running on http port 80

● Mimic (v13)
– Configurable dashboard running on https port 8443
– Generate a self-signed cert and admin password for the dashboard

● Nautilus (master): allowedUnsupported: true
– Secure dashboard similar to Mimic 
– Enables the orchestrator mgr modules 



Automated Stateful Upgrades

● Mostly Automated in v0.9
● Operator controls and manages software upgrade flow
● Upgrade is simply applying/reconciling desired state
● Leverages built-in functionality of K8s resources like 

Deployments to update components in a rolling fashion
● Separation of Rook and Ceph versioning to isolate impact



Rook Upgrades 

● Updates the Rook operator and related orchestration 
components

● Does not update the data path
● Set the new version in the operator deployment

kubectl -n rook-ceph-system set image \
  deploy/rook-ceph-operator rook-ceph-operator=rook/ceph:v0.9.0



Ceph Upgrades 

● Updates the data path
– Luminous, Mimic, or Nautilus

● Set the new version in the CephCluster CRD
● Special upgrade and migration steps between major 

versions of Ceph (Mimic -> Nautilus) will be implemented 
as necessary



DEMO: Upgrades 

● Configure Ceph Luminous
● Update Ceph from Luminous to Mimic



CephCluster: Mon Settings

apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: my-cluster
spec:
  ...
  mon:
    count: 3
    multiPerNode: false

● Mons must maintain quorum
– Paxos: majority is necessary

● Recommended settings
– 3 mons: Tolerant of single node failure
– Place on unique nodes



Orchestration of Monitors

● Deployment object wraps each mon 
pod for reliable lifecycle management

● Service object is created per mon to 
establish a consistent IP address - 
important for quorum and mon map

apiVersion:
  ceph.rook.io/v1beta1
kind: Cluster
metadata:
  name: my-cluster
spec:
  mon:
    count: 3
    multiPerNode: false



Monitors: Maintaining quorum

● Mon quorum is critical to cluster health
● Operator regularly checks on mon quorum
● If a mon falls out of quorum for too long, the operator takes 

action to replace the failed mon
○ A new mon is started (new Deployment and Service IP)
○ Wait for new mon to join quorum
○ Delete the failed mon Deployment and Service
○ Remove the failed mon from the mon map



Orchestration of OSDs

● Operator starts OSDs according to config from Cluster CRD
● Operator schedules a Job on each node to initialize/provision 

its OSDs
● One Deployment is created for each OSD

○ OSDs run independently
● Horizontal scaling: Operator automatically adds OSDs to new 

nodes and devices



CephCluster: OSD Settings

apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: auto-cluster
spec:
  ...
  storage:
    useAllNodes: true
    useAllDevices: true

● Automatic selection mode
– Rook will discover available 

devices on all nodes
– Configure OSDs on all devices 

that are not in use



CephCluster: OSD Settings
apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: specific-cluster
spec:
  ...
  storage:
    useAllNodes: false
    useAllDevices: false
    nodes: 
    - name: node1
      devices:
      - name: sda
      - name: sdb

● Specific selection mode
– Rook will only use the nodes 

specified
– OSDs will only be configured on 

the devices specified, if available



CephCluster: OSD Settings
apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: filter-cluster
spec:
  ...
  storage:
    useAllNodes: true
    useAllDevices: false
    deviceFilter: ^sd.

● Filtering mode
– Rook will discover available 

devices on all nodes
– Configure OSDs on all devices 

that match the filter



CephCluster: OSD Settings
  storage:
    useAllNodes: true
    useAllDevices: true
  placement:
    osd:
      nodeAffinity:
        requiredDuringSchedulingIgnoredDuringExecution:
          nodeSelectorTerms:
          - matchExpressions:
            - key: role
              operator: In
              values:
              - storage-node

● Node Labels

● Rook will only 
place OSDs on 
nodes that match 
the node filter

● role=storage-node



CephCluster: OSD Settings
apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  name: perf-cluster
spec:
  ...
  storage:
    useAllNodes: true
    useAllDevices: false
    deviceFilter: ^sd.
    config:
      metadataDevice: nvme01

● Performance Optimization
– MetadataDevice (SSD/NMMe):

● Bluestore: WAL and DB
● Filestore: Journal

– Data stored on other devices 
(HDDs)



CephCluster: OSD Settings
apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  Name: high-perf-cluster
spec:
  ...
  storage:
    useAllNodes: true
    useAllDevices: false
    deviceFilter: ^nvme.
    config:
      osdsPerDevice: 5

● High Performance
– If NVMe devices are available 

for data, create multiple OSDs 
per device

– Compute requirements are more 
than storage overhead



Orchestration of RBD Mirroring

apiVersion:
  ceph.rook.io/v1
kind: CephCluster
metadata:
  Name: high-perf-cluster
spec:
  ...
  rbdMirroring:
    workers: 3
  

● Creates a Deployment for each 
RBD Mirroring worker

● Configure which pools and block 
images are to be mirrored with the 
Rook toolbox



Orchestration of RGW

● Creates an object gateway according 
to settings in the ObjectStore CRD

● Required Ceph pools are created
○ 5 metadata pools
○ 1 data pool (can be erasure coded)

● RGW pods are started via 
Deployment for HA/reliability

● Service created for client access and 
load balancing

apiVersion: 
ceph.rook.io/v1beta1
kind: ObjectStore
metadata:
  name: my-store
spec:
  metadataPool: 
    replicated:
      size: 3
  dataPool: 
    erasureCoded:
      dataChunks: 2
      codingChunks: 2
  gateway: 
      port: 80
      instances: 1



Orchestration of CephFS

apiVersion: 
ceph.rook.io/v1beta1
kind: Filesystem
metadata:
  name: my-filesystem
spec:
  metadataPool: 
    replicated:
      size: 3
  dataPools: 
    - replicated:
        size: 3
  metadataServer: 
    activeCount: 1
    activeStandby: true

● Creates a shared file system according 
to settings in the Filesystem CRD

● Required Ceph pools are created
○ 1 metadata pool
○ 1 data pool (can be erasure coded)

● MDS pods are started via 
Deployment for HA/reliability
○ Standby MDS pods for quick 

failover



Rook Agent

● Dynamically attaches/mounts Ceph storage for pod 
consumption

● Runs as DaemonSet on all schedulable nodes in cluster
● Block: rbd map
● File: mount -t ceph
● Fencing and locking for ReadWriteOnce
● Detach and reattach if pod scheduled onto another node
● Currently a Kubernetes FlexVolume
● Will be replaced by CSI driver in the near future



● Rook Booth
● Contribute to Rook

○ https://github.com/rook/rook
○ https://rook.io/

● Slack - https://rook-io.slack.com/
○ #conferences now for Kubecon China

● Twitter - @rook_io
● Forums - https://groups.google.com/forum/#!forum/rook-dev
● Community Meetings

How to get involved?

https://github.com/rook/rook
https://rook.io/
https://rook-io.slack.com/
https://groups.google.com/forum/#!forum/rook-dev


Questions?
https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/


Thank you!
https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/
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