
Rook Deep Dive
Travis Nielsen
Rook Senior Maintainer
Red Hat

https://rook.io/
https://github.com/rook/rook

https://rook.io/
https://github.com/rook/rook

● Open Source Storage Control Plane for Kubernetes
– Extends Kubernetes with CRDs and operators for each

storage provider
● CNCF Incubation project
● Automates deployment, bootstrapping, configuration,

provisioning, scaling, upgrading, migration, disaster
recovery, monitoring, and resource management

What is Rook?

● Implements the Operator Pattern for storage solutions
● User defines desired state for the storage cluster
● The Operator runs reconciliation loops

○ Observe - Watch for changes in state
○ Analyze - Determine differences to apply
○ Act - Apply changes to the cluster

Rook Operators

● Arbitrary types that extend the Kubernetes API
○ look just like any other built-in object (e.g. Pod)
○ Enabled native kubectl experience

● A means for user to describe their desired state

Custom Resource Definitions (CRDs)

Rook Framework for Storage Solutions

● Rook is more than just a collection of Operators and CRDs
● Framework for storage providers to integrate their

solutions into cloud-native environments
○ Storage resource normalization
○ Operator patterns/plumbing
○ Common policies, specs, logic
○ Testing effort

● Ceph, CockroachDB, Minio, NFS, Cassandra, Nexenta

● Data Platforms
– Ceph, Minio, NFS, Nexenta

● Databases
– CockroachDB, Cassandra

● “Adding a new Storage Provider to Rook”
– 4:30, Room 611: Jared Watts, Upbound

Storage Providers

Ceph Deep Dive

General Orchestration Approach

● Operator runs ceph commands to initialize and bootstrap
cluster (cephx auth, crush map, etc.)

● Operator creates Deployments to manage the lifecycle of
each Ceph daemon
– Init containers will generate the Ceph config
– Ceph daemons will run directly in the main container

● Health of cluster and components is monitored over time and
corrective actions taken

CephCluster

apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: my-cluster
spec:
 dataDirHostPath: /var/lib/rook
 cephVersion:
 Image: ceph/ceph:v13.2.2-20181023
 dashboard:
 enabled: true
 network:
 hostNetwork: true
 ...

● Ceph CRDs are v1
● Host path

– Required for persistence
of the data

● Dashboard
– Web UI to view and

manage the Ceph cluster

● Network

CephCluster: Version

apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: my-cluster
spec:
 ...
 cephVersion:
 Image: ceph/ceph:v13.2.2-20181023

● Independent from the Rook
version

● Controls the data plane

● Updated independently from the
Rook version

● Support lifetime depends on the
Ceph project

● https://hub.docker.com/r/ceph/ceph/tags/

https://hub.docker.com/r/ceph/ceph/tags/

Ceph Version Differences

● Luminous (v12)
– Readonly dashboard running on http port 80

● Mimic (v13)
– Configurable dashboard running on https port 8443
– Generate a self-signed cert and admin password for the dashboard

● Nautilus (master): allowedUnsupported: true
– Secure dashboard similar to Mimic
– Enables the orchestrator mgr modules

Automated Stateful Upgrades

● Mostly Automated in v0.9
● Operator controls and manages software upgrade flow
● Upgrade is simply applying/reconciling desired state
● Leverages built-in functionality of K8s resources like

Deployments to update components in a rolling fashion
● Separation of Rook and Ceph versioning to isolate impact

Rook Upgrades

● Updates the Rook operator and related orchestration
components

● Does not update the data path
● Set the new version in the operator deployment

kubectl -n rook-ceph-system set image \
 deploy/rook-ceph-operator rook-ceph-operator=rook/ceph:v0.9.0

Ceph Upgrades

● Updates the data path
– Luminous, Mimic, or Nautilus

● Set the new version in the CephCluster CRD
● Special upgrade and migration steps between major

versions of Ceph (Mimic -> Nautilus) will be implemented
as necessary

DEMO: Upgrades

● Configure Ceph Luminous
● Update Ceph from Luminous to Mimic

CephCluster: Mon Settings

apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: my-cluster
spec:
 ...
 mon:
 count: 3
 multiPerNode: false

● Mons must maintain quorum
– Paxos: majority is necessary

● Recommended settings
– 3 mons: Tolerant of single node failure
– Place on unique nodes

Orchestration of Monitors

● Deployment object wraps each mon
pod for reliable lifecycle management

● Service object is created per mon to
establish a consistent IP address -
important for quorum and mon map

apiVersion:
 ceph.rook.io/v1beta1
kind: Cluster
metadata:
 name: my-cluster
spec:
 mon:
 count: 3
 multiPerNode: false

Monitors: Maintaining quorum

● Mon quorum is critical to cluster health
● Operator regularly checks on mon quorum
● If a mon falls out of quorum for too long, the operator takes

action to replace the failed mon
○ A new mon is started (new Deployment and Service IP)
○ Wait for new mon to join quorum
○ Delete the failed mon Deployment and Service
○ Remove the failed mon from the mon map

Orchestration of OSDs

● Operator starts OSDs according to config from Cluster CRD
● Operator schedules a Job on each node to initialize/provision

its OSDs
● One Deployment is created for each OSD

○ OSDs run independently
● Horizontal scaling: Operator automatically adds OSDs to new

nodes and devices

CephCluster: OSD Settings

apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: auto-cluster
spec:
 ...
 storage:
 useAllNodes: true
 useAllDevices: true

● Automatic selection mode
– Rook will discover available

devices on all nodes
– Configure OSDs on all devices

that are not in use

CephCluster: OSD Settings
apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: specific-cluster
spec:
 ...
 storage:
 useAllNodes: false
 useAllDevices: false
 nodes:
 - name: node1
 devices:
 - name: sda
 - name: sdb

● Specific selection mode
– Rook will only use the nodes

specified
– OSDs will only be configured on

the devices specified, if available

CephCluster: OSD Settings
apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: filter-cluster
spec:
 ...
 storage:
 useAllNodes: true
 useAllDevices: false
 deviceFilter: ^sd.

● Filtering mode
– Rook will discover available

devices on all nodes
– Configure OSDs on all devices

that match the filter

CephCluster: OSD Settings
 storage:
 useAllNodes: true
 useAllDevices: true
 placement:
 osd:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: role
 operator: In
 values:
 - storage-node

● Node Labels

● Rook will only
place OSDs on
nodes that match
the node filter

● role=storage-node

CephCluster: OSD Settings
apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 name: perf-cluster
spec:
 ...
 storage:
 useAllNodes: true
 useAllDevices: false
 deviceFilter: ^sd.
 config:
 metadataDevice: nvme01

● Performance Optimization
– MetadataDevice (SSD/NMMe):

● Bluestore: WAL and DB
● Filestore: Journal

– Data stored on other devices
(HDDs)

CephCluster: OSD Settings
apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 Name: high-perf-cluster
spec:
 ...
 storage:
 useAllNodes: true
 useAllDevices: false
 deviceFilter: ^nvme.
 config:
 osdsPerDevice: 5

● High Performance
– If NVMe devices are available

for data, create multiple OSDs
per device

– Compute requirements are more
than storage overhead

Orchestration of RBD Mirroring

apiVersion:
 ceph.rook.io/v1
kind: CephCluster
metadata:
 Name: high-perf-cluster
spec:
 ...
 rbdMirroring:
 workers: 3

● Creates a Deployment for each
RBD Mirroring worker

● Configure which pools and block
images are to be mirrored with the
Rook toolbox

Orchestration of RGW

● Creates an object gateway according
to settings in the ObjectStore CRD

● Required Ceph pools are created
○ 5 metadata pools
○ 1 data pool (can be erasure coded)

● RGW pods are started via
Deployment for HA/reliability

● Service created for client access and
load balancing

apiVersion:
ceph.rook.io/v1beta1
kind: ObjectStore
metadata:
 name: my-store
spec:
 metadataPool:
 replicated:
 size: 3
 dataPool:
 erasureCoded:
 dataChunks: 2
 codingChunks: 2
 gateway:
 port: 80
 instances: 1

Orchestration of CephFS

apiVersion:
ceph.rook.io/v1beta1
kind: Filesystem
metadata:
 name: my-filesystem
spec:
 metadataPool:
 replicated:
 size: 3
 dataPools:
 - replicated:
 size: 3
 metadataServer:
 activeCount: 1
 activeStandby: true

● Creates a shared file system according
to settings in the Filesystem CRD

● Required Ceph pools are created
○ 1 metadata pool
○ 1 data pool (can be erasure coded)

● MDS pods are started via
Deployment for HA/reliability
○ Standby MDS pods for quick

failover

Rook Agent

● Dynamically attaches/mounts Ceph storage for pod
consumption

● Runs as DaemonSet on all schedulable nodes in cluster
● Block: rbd map
● File: mount -t ceph
● Fencing and locking for ReadWriteOnce
● Detach and reattach if pod scheduled onto another node
● Currently a Kubernetes FlexVolume
● Will be replaced by CSI driver in the near future

● Rook Booth
● Contribute to Rook

○ https://github.com/rook/rook
○ https://rook.io/

● Slack - https://rook-io.slack.com/
○ #conferences now for Kubecon China

● Twitter - @rook_io
● Forums - https://groups.google.com/forum/#!forum/rook-dev
● Community Meetings

How to get involved?

https://github.com/rook/rook
https://rook.io/
https://rook-io.slack.com/
https://groups.google.com/forum/#!forum/rook-dev

Questions?
https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/

Thank you!
https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/

	Slide 1
	What is Rook?
	Rook Operators
	Custom Resource Definitions (CRDs)
	Rook Framework for Storage Solutions
	Slide 6
	Slide 7
	General Orchestration Approach
	Slide 9
	Slide 10
	Slide 11
	Automated Stateful Upgrades
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Orchestration of Monitors
	Monitors: Maintaining quorum
	Orchestration of OSDs
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Orchestration of RGW
	Slide 27
	Orchestration of CephFS
	Rook Agent
	How to get involved?
	Slide 31
	Slide 32

