
SIG-Auth Deep Dive
Tim Allclair, Mike Danese, Jordan Liggitt



SIG-Auth Deep Dive

Add-on Auth

kubernetes/kubernetes/#62747

Examples

● Local volume provisioning
● Device plugins
● Device metrics
● CRI Streaming server

xkcd.com/2044

https://github.com/kubernetes/kubernetes/issues/62747


SIG-Auth Deep Dive



SIG-Auth Deep Dive

Server Auth'n
Cluster CA (automounted)

Client Auth'n
Service Accounts

Auth'z
Mostly RBAC

Done!



SIG-Auth Deep Dive

Server Auth'n
Auto-approved in-cluster 
per-pod certs?

Client Auth'n
Service Accounts + 
TokenReview

Auth'z
RBAC + 
SubjectAccessReview



SIG-Auth Deep Dive

Server Auth'n
Cluster CA (automounted)

Client Auth'n
Enhanced! Service Accounts

Auth'z
Maybe:
NodeAuthorizer applied to 
DaemonSet pods



SIG-Auth Deep Dive

Server Auth'n
Auto-approved in-cluster 
service certs?

Client Auth'n
Enhanced! Service Accounts 
+ TokenReview

Auth'z
Maybe:
NodeAuthorizer + 
SubjectAccesReview



SIG-Auth Deep Dive

Common approach for delegated pod admission & policy

kubernetes/kubernetes/#60001

https://xkcd.com/927/

https://github.com/kubernetes/kubernetes/issues/60001


SIG-Auth Deep Dive

PodSecurityPolicy - checked against the pods service account OR the creating 
user

NetworkPolicy - Namespaced; PodSelector determines the pods to apply to

ImagePolicy - delegates to an external webhook. Review includes image, 
annotations, and namespace

LimitRanger, ResourceQuota - namespace singleton

Toleration & NodeSelector restrictions - namespace singleton, defined on the 
namespace object



Apply policy at the namespace level
● most widely used approach right
● consistent with authorization (create granted at the namespace level)
● can't be applied more granularly in a namespace, and managing policy across 

namespaces needs to be handled.

Apply policy on the pod's service account
● Counter-intuitive
● Not really more secure than namespace level
● PodSecurityPolicy conflates 2 approaches and weakens security

SIG-Auth Deep Dive



SIG-Auth Deep Dive

Applied to requesting user - check policy when a create {ReplicaSet/Controller, 
Job, Deployment, DaemonSet, StatefulSet, ...} request is made

● How does it handle delegation to controllers?
● How does it handle CRDs and 3rd party controllers?
● What about mutating admission that acts on pods?
● Doesn't work for stateful policies (e.g. ResourceQuota)



SIG-Auth Deep Dive

Other areas of inconsistency
● Composability & conflict resolution

(especially with mutation, or mixed allow & deny)
● Domain specific (scheduling policy) vs. resource specific (pod restriction)
● Default allow vs. default deny; whitelist vs. blacklist
● How to handle mutations
● Policy scope: namespaced or cluster-level



SIG-Auth Deep Dive

API server authentication to webhooks

kubernetes/kubernetes/#70815

API Server Webhook Handler
Audit

Admission
Conversion

...

https://github.com/kubernetes/kubernetes/issues/70815


SIG-Auth Deep Dive

Why do API servers need to authenticate to webhooks at all?

● Webhooks accepting data need to know if the data should be trusted
○ Audit webhooks
○ Admission webhooks that take external actions

● Webhooks returning data need to know if the recipient is authorized
○ Admission webhooks that modify incoming objects

● Webhooks doing expensive work should only do it for the right callers



SIG-Auth Deep Dive

Simplest approach: add credentials to the webhook registration object

API Server Webhook Handler
Audit + credential

Admission + credential
Conversion + credential

...

Authorization: Bearer 12345



SIG-Auth Deep Dive

Problem 1: no ability to distinguish between API servers

Kube API Server

Webhook HandlerKube API Server

Kube API Server



SIG-Auth Deep Dive

Problem 2: assumes uniform permissions among API servers

Kube API Server

Webhook HandlerKube API Server

Kube API Server

Metrics Server

Aggregated Server

Aggregated Server



Ideas

SIG-Auth Deep Dive

Kubernetes-aware webhook Kubernetes-unaware webhook

Uniform identity

Per-caller identity

Shared credential Shared credential

TokenRequest
Per-caller, per-webhook ???



SIG-Auth Deep Dive

Bringing the Certificates API to GA

kubernetes/kubernetes#69836

● API shape/issues
○ Requires requesters to know all the info about the end certificate.
○ Use for higher-level requests (i.e. profiles).
○ Requested certificate attributes split unthoughtful between encoded CSR and fields in request 

spec which create difference in semantics.
● Approval flow/issues

○ Cannot limit or add components to request (limit or add SANs, usages, etc)
● Signing flow/issues

○ Method for multiple signers to interact (or approver to indicate what signer should be used)
● Guarantees on issued certificates

○ No (current) guarantee all requested extensions/SANs are issued
○ No (current) guarantee issued client certificates will be accepted as API client certs

https://github.com/kubernetes/kubernetes/issues/69836

