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CONTINUOUS DELIVERY

Continuous delivery is an approach where
teams release products frequently and
predictably from source code repository to
production in an automated fashion.
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Deployment



D e plOyme Nt Recreate

Kill all existing pods before creating new ones.

strategies



Deployment
strategies

RollingUpdate

Gradually scale down the old ReplicaSets and
scale up the new one.
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Continuous Deployment
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How do we detect issues in
production?

Metrics.



How do we reduce impact in
case of a bad release?

Custom deployment strategies.



Custom Deployment Strategies
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BLUE-GREEN DEPLOYMENT: TRAFFIC TIMELINE
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Canary release is a technique to reduce the
risk of introducing a new software version
In production by slowly rolling out the
change to a small subset of users before
rolling it out to the entire infrastructure and
making it available to everybody.

MARTINFOWLER.COM
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CANARY DEPLOYMENT: TRAFFIC TIMELINE
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Canary Deployment Controller



How do we automate the
deployment rollout?

Scripts in CI/CD tool.



EXAMPLE

kubectl
kubectl
kubectl
kubectl
kubectl

apply
apply
apply
apply
apply

-f deployment-canary.yaml
-f deployment-stable.yaml
-f service-canary.yaml
-f service-stable.yaml

-f 1ngress.yaml



EXAMPLE

kubectl apply -f deployment-canary.yaml
sleep 5m # wait for rollout to finish

# check if application is healthy

curl http://metrics:9090/my-metric

# proceed or rollback

if

kubectl apply -f deployment-stable.yaml



Can we do better?



How do we automate the
deployment rollout?

CRD controller?




Declarative

Describes the desired state,
not the steps to reach it

Benefits of CRDs

Self-healing

Reconciliation loop will keep
retrying until reaching the
final state

L

Reusable

Building block that can be
used together with other
Kubernetes resources
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CANARY DEPLOYMENT
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CANARY DEPLOYMENT
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DECLARATIVE CONTINUOUS DEPLOYMENT

kubectl apply -f canarydeployment.yaml
kubectl apply -f service-canary.yaml
kubectl apply -f service-stable.yaml
kubectl apply -f ingress.yaml



How will CanaryDeployment
controller detect a bad
release?

Metrics.




Kubernetes Metrics APlIs



HORIZONTAL POD AUTOSCALER (HPA)

Horizontal Pod Autoscaler is the primary
consumer of Kubernetes Metrics APIs at the
moment.
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CANARY DEPLOYMENT CONTROLLER
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RESOURCE METRICS API

Metrics for Pods and Nodes
o CPU
e NMemory



CUSTOM METRICS API

Arbitrary metrics for any Kubernetes resource
e Pod

e Service

e INngress



CUSTOM METRICS API ADAPTERS

Prometheus Adapter
https://github.com/DirectXMan12/k8s-prometheus-adapter

Stackdriver (GCP)

https://cloud.google.com/monitoring/custom-metrics/

Azure Kubernetes Metrics Adapter
https://github.com/Azure/azure-k8s-metrics-adapter

Datadog Cluster Agent
https://github.com/DataDog/datadog-agent/blob/master/docs/cluster-agent/CUSTOM_METRICS_SERVER.md

Custom Metrics Adapter Server Boilerplate
https://github.com/kubernetes-incubator/custom-metrics-apiserver



EXTERNAL METRICS API

Arbitrary metrics from outside of Kubernetes

cluster

e Amazon SQS queue size (CloudWatch)

e Google Cloud Pub/Sub undelivered
messages (Stackdriver)



CanaryDeployment CRD



DEPLOYMENT

apiVersion: apps/vl
kind: Deployment
metadata:
name: foo
spec:
replicas: 5
selector: ... # Pod selector
template: ... # Pod template



CANARY DEPLOYMENT

apiVersion: kanarini.nilebox.github.com/vlalphal
kind: CanaryDeployment
metadata:

name: foo

spec:
selector: ... # Pod selector
template: ... # Pod template
tracks:
canary: ... # "canary" track settings

stable: ... # "stable" track settings



CANARY DEPLOYMENT

kind: CanaryDeployment
metadata:
name: foo
spec:
selector: ... # Pod selector
template: ... # Pod template



CANARY DEPLOYMENT

tracks:
canary: ... # "canary" track settings
stable: ... # "stable" track settings



CANARY DEPLOYMENT

canary:
replicas: 1
labels:
track: canary

stable:
replicas: 5
labels:
track: stable



CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120
metrics:
- type: Object

object:
describedObject.:
kind: Service
name: "foo-canary"
metric:

name: "request failure rate:1lm"
target.:

type: Value

value: 0.1



CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120



CANARY DEPLOYMENT

metrics:
- type: Object
object:
describedObject.:
kind: Service
name: '"foo-canary"



CANARY DEPLOYMENT

metric:

name: "request failure rate:1lm"
target.:

type: Value

value: 0.1



Demo

Kanarini CRD Controller
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Demo scriptis available at
https://github.com/nilebox/kanarini



LINKS

Kanarini (CanaryDeployment CRD Controller)
https://github.com/nilebox/kanarini

Prometheus Adapter for Custom Metrics API
https://github.com/DirectXMan12/k8s-prometheus-adapter

Prometheus Operator Quickstart
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus

Heptio Contour (Ingress Controller)
https://github.com/heptio/contour



Key takeaways for CRDs

& \

Reuse existing resources Keep it simple

No need to reinvent the wheel. Solve a minimal subset of a problem at once.

o °* O
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Use abstractions Use the power of open source

Generic APIs are reusable. Read existing code and share your own code.
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Thank you!
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