A

Custom Deployment Strategies
for Kubernetes

NAIL ISLAMOV | SENIOR DEVELOPER | @NILEBOX

CONTINUOUS DELIVERY

Continuous delivery is an approach where
teams release products frequently and
predictably from source code repository to
production in an automated fashion.

CI1/CD PIPELINE

Acceptance Deploy to

Build & Test & Tosts Production

CI1/CD PIPELINE

Build & Test Deploy to Acceptance Deploy to

Staging Tests Production

Deployment

D e plOyme Nt Recreate

Kill all existing pods before creating new ones.

strategies

Deployment
strategies

RollingUpdate

Gradually scale down the old ReplicaSets and
scale up the new one.

ROLLING UPDATE

version1

-

- BT

version 2

ROLLING UPDATE

Deployvment

N

version 2

Continuous Deployment

ROLLING UPDATE: TRAFFIC TIMELINE

ROLLING UPDATE: ROLLBACK

How do we detect issues in
production?

Metrics.

How do we reduce impact in
case of a bad release?

Custom deployment strategies.

Custom Deployment Strategies

BLUE-GREEN DEPLOYMENT

“blue”
Deployment g d ReplicaSet —b“
version1

m«m

Production: “blue”

BLUE-GREEN DEPLOYMENT

“blue”
- ~ .
version1
m — 3
“green”
-~ -
version 2

Production: “blue"

BLUE-GREEN DEPLOYMENT

“blue”
- -~ .
version1
m — K3
“green”
R,
version 2

Production: “green”

BLUE-GREEN DEPLOYMENT: TRAFFIC TIMELINE

BLUE-GREEN DEPLOYMENT: ROLLBACK

Canary release is a technique to reduce the
risk of introducing a new software version
In production by slowly rolling out the
change to a small subset of users before
rolling it out to the entire infrastructure and
making it available to everybody.

MARTINFOWLER.COM

CANARY DEPLOYMENT

“stable”
Deployment gz d ReplicaSet —b“@m
O%
version 1

“cand I"y” / 10%

e - T - -

version1

CANARY DEPLOYMENT

“stable”
Deployment Ez d ReplicaSet g g m <4 m
O%
version 1

“cand I"y” / 10%

e - T - -

version 2

CANARY DEPLOYMENT

“stable”
Deployment gz d ReplicaSet g “ <4 m
O%
version 2

“cand I"y” / 10%

Cocpomen I recose B vos BB s

version 2

CANARY DEPLOYMENT

“stable”
Deployment g d ReplicaSet g g “ <4 m
O%
version 2

“cand I"y” / 10%

e - T - -

version 2

CANARY DEPLOYMENT: TRAFFIC TIMELINE

CANARY DEPLOYMENT: ROLLBACK

Canary Deployment Controller

How do we automate the
deployment rollout?

Scripts in CI/CD tool.

EXAMPLE

kubectl
kubectl
kubectl
kubectl
kubectl

apply
apply
apply
apply
apply

-f deployment-canary.yaml
-f deployment-stable.yaml
-f service-canary.yaml
-f service-stable.yaml

-f 1ngress.yaml

EXAMPLE

kubectl apply -f deployment-canary.yaml
sleep 5m # wait for rollout to finish

check if application is healthy

curl http://metrics:9090/my-metric

proceed or rollback

if

kubectl apply -f deployment-stable.yaml

Can we do better?

How do we automate the
deployment rollout?

CRD controller?

Declarative

Describes the desired state,
not the steps to reach it

Benefits of CRDs

Self-healing

Reconciliation loop will keep
retrying until reaching the
final state

L

Reusable

Building block that can be
used together with other
Kubernetes resources

CANARY DEPLOYMENT

“stable” “stable”
Deployment g d ReplicaSet g g “ <4 m
90%
version1
“canary” “canary” AO%

- T - -

version 2

CANARY DEPLOYMENT

“stable” “stable”
Deployvment B ReplicaSet s = m <4 m
90%
version1
“canary” “canary” AO%

o - T - -

version 2

CANARY DEPLOYMENT

“stable” “stable”

Deployment m
. 90%
version1 \ ?
“canary” “canary” AO%

Deployvment

version 2

CANARY DEPLOYMENT

“stable” “stable”

Deployment

90%

version1
CanaryDeployment

“canary” “canary” AO%

Deployment

version 2

CANARY DEPLOYMENT

“stable”

CanaryDeployment

DECLARATIVE CONTINUOUS DEPLOYMENT

kubectl apply -f canarydeployment.yaml
kubectl apply -f service-canary.yaml
kubectl apply -f service-stable.yaml
kubectl apply -f ingress.yaml

How will CanaryDeployment
controller detect a bad
release?

Metrics.

Kubernetes Metrics APlIs

HORIZONTAL POD AUTOSCALER (HPA)

Horizontal Pod Autoscaler is the primary
consumer of Kubernetes Metrics APIs at the
moment.

HPA CONTROLLER

Resource Metrics API

/

e a8 Custom Metrics API

N

Deployment B o HPA Controller

External Metrics API

CANARY DEPLOYMENT CONTROLLER

“stable” Resource Metrics API

Deployvment
version 1 \

“canary”

«—

Deployment

version 2

External Metrics API

Canary Deployment Custom Metrics API
Controller

RESOURCE METRICS API

Metrics for Pods and Nodes
o CPU
e NMemory

CUSTOM METRICS API

Arbitrary metrics for any Kubernetes resource
e Pod

e Service

e INngress

CUSTOM METRICS API ADAPTERS

Prometheus Adapter
https://github.com/DirectXMan12/k8s-prometheus-adapter

Stackdriver (GCP)

https://cloud.google.com/monitoring/custom-metrics/

Azure Kubernetes Metrics Adapter
https://github.com/Azure/azure-k8s-metrics-adapter

Datadog Cluster Agent
https://github.com/DataDog/datadog-agent/blob/master/docs/cluster-agent/CUSTOM_METRICS_SERVER.md

Custom Metrics Adapter Server Boilerplate
https://github.com/kubernetes-incubator/custom-metrics-apiserver

EXTERNAL METRICS API

Arbitrary metrics from outside of Kubernetes

cluster

e Amazon SQS queue size (CloudWatch)

e Google Cloud Pub/Sub undelivered
messages (Stackdriver)

CanaryDeployment CRD

DEPLOYMENT

apiVersion: apps/vl
kind: Deployment
metadata:
name: foo
spec:
replicas: 5
selector: ... # Pod selector
template: ... # Pod template

CANARY DEPLOYMENT

apiVersion: kanarini.nilebox.github.com/vlalphal
kind: CanaryDeployment
metadata:

name: foo

spec:
selector: ... # Pod selector
template: ... # Pod template
tracks:
canary: ... # "canary" track settings

stable: ... # "stable" track settings

CANARY DEPLOYMENT

kind: CanaryDeployment
metadata:
name: foo
spec:
selector: ... # Pod selector
template: ... # Pod template

CANARY DEPLOYMENT

tracks:
canary: ... # "canary" track settings
stable: ... # "stable" track settings

CANARY DEPLOYMENT

canary:
replicas: 1
labels:
track: canary

stable:
replicas: 5
labels:
track: stable

CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120
metrics:
- type: Object

object:
describedObject.:
kind: Service
name: "foo-canary"
metric:

name: "request failure rate:1lm"
target.:

type: Value

value: 0.1

CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120

CANARY DEPLOYMENT

metrics:
- type: Object
object:
describedObject.:
kind: Service
name: '"foo-canary"

CANARY DEPLOYMENT

metric:

name: "request failure rate:1lm"
target.:

type: Value

value: 0.1

Demo

Kanarini CRD Controller

EXAMPLE

“stable”

Deployvment
version 1 \

Prometheus Adapter

Canary Deployment

e A k8s Custom Metrics API

Controller

“canary”

«—

Deployment l

EXAMPLE

“stable”

Prometheus Adapter

N\
'd

“canary”

Demo scriptis available at
https://github.com/nilebox/kanarini

LINKS

Kanarini (CanaryDeployment CRD Controller)
https://github.com/nilebox/kanarini

Prometheus Adapter for Custom Metrics API
https://github.com/DirectXMan12/k8s-prometheus-adapter

Prometheus Operator Quickstart
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus

Heptio Contour (Ingress Controller)
https://github.com/heptio/contour

Key takeaways for CRDs

& \

Reuse existing resources Keep it simple

No need to reinvent the wheel. Solve a minimal subset of a problem at once.

o °* O

o? ° ¢ O

Use abstractions Use the power of open source

Generic APIs are reusable. Read existing code and share your own code.

A

Thank you!

NAIL ISLAMOV | SENIOR DEVELOPER | @NILEBOX

