
COLLECTING OPERATIONAL METRICS
ACROSS 5,000 NAMESPACES

Using the Metering project of the Operator Framework

Rob Szumski
Product Manager, OpenShift

Chance Zibolski
Engineer/Team Lead, OpenShift

Kubecon ‘182

Talk Overview
● Operator-Framework overview
● Metering goals and use-cases
● Metering technical architecture
● Insights and findings from 5,000 namespaces
● Demo

OPERATOR-FRAMEWORK OVERVIEW

https://github.com/operator-framework

Build Operators - no
specialized knowledge of
Kubernetes API required

Install, update, and manage
Operators and their dependencies

Enable usage reporting
for Operators and
resources within

Kubernetes

Operator Framework

Insights from
Cluster Monitoring

App-specific
Insights from

Operators

21

Metering Goals

Use SDK libraries to
export metrics

Built Operator is run by
the lifecycle manager

GOALS AND USE-CASES

7

Chargeback/Showback Goals

Push teams towards smart
resource usage

ENCOURAGE
CORRECT BEHAVIOR

POST
PROCESS

USE CLUSTER
MONITORING

Embrace further
customization based on your

business’ needs

The cluster already tracks this
information to function

8

End Result: Usage Report

9

Out of the box Reports

CPU

Memory

Storage

Request

Actual Usage

Utilization %

Pod

Namespace

Node

Cluster

Metering with Multiple Clusters

AWS Cluster

R
ep

or
t S

to
ra

ge

ReportsKubernetes ClustersDev
Teams

Billing Calculations

Namespace
Pod Pod

Namespace
Pod Pod

Other Platforms

Namespace
Pod Pod

Namespace
Pod Pod

Metering
Software

Metering
Software

AWS Billing API

Node $$ per Minute
$ per Namespace
$ per label query

Namespace CPU
Namespace RAM

Namespace CPU
Namespace RAM

no $$ computation
possible

● Team has three projects
○ Development
○ Staging
○ Production

● Budget of $10,000 for all three

Use-Case: AWS showback by team

Metering
Software

Pod $$$
Usage CSV

Read CSV
into Excel

Customer’s tool(s)
of choice

Import into
BI tool

● 15 teams using the cluster’s finite resources
● Shame teams that are requesting over 2x what they are actually using
● Flexible granularity per cluster, per region, all clusters

Use-Case: Shame Underutilization

Metering
Software

Pod RAM
Requested

Pod RAM
Actual Used

Calculate Ratios
Against 2x Threshold

Customer’s desired logic

List of
Teams

● Team is running in production across two providers
● How much RAM are we using across all clusters?
● Customer wants provide $/node and split infra node cost amongst all teams

Use-Case: Two clusters on bare metal

Cluster 1
Metering

RAM Usage

Cluster 2
Metering

Combine RAM
reports

Customer’s
desired logic

Showback to
teams

Cluster Total

RAM Usage

Cluster Total

Add share of
infra cost

Raw machine cost + shared
NAS storage cost

Each node = 64gb RAM
$3k/mo

● Leverage metering as long term storage of key metrics
● Compute reports over many weeks, months or years
● Out of the box “utilization” reports which indicate % of cluster capacity

consumed from a pod or namespace as well as overall cluster utilization
reports to allow both low-level and high-level views

● Openshift Online leverages metering to determine how much capacity is
available in our Openshift clusters.

Capacity Planning

Online Huge multi-tenant, 5k+ namespace clusters

● Example use-cases:
○ Telemetry
○ Licensing
○ Usage based billing

● How we use this at Red Hat
○ Reporting on Openshift upgrade telemetry metrics (version distribution,

of alerts fired during, etc)
○ Evaluating usage based billing of Red Hat products

Metering With Custom Metrics

TECHNICAL ARCHITECTURE

Kubecon ‘1817

Tech stack
● Presto (prestodb.io)

○ Distributed SQL query engine designed for interactive analytics processing
○ Allows querying data where it lives; no need to bulk import all your data if it

already lives in a database supported by Presto
○ Allows joining data from multiple datastores including Hive, Postgresql,

Cassandra and more
○ Written by Facebook, used by many large internet companies like Airbnb and

Dropbox
● Apache Hive

○ A data warehouse project that builds on top of Hadoop
○ Supports storing data into HDFS, S3, local file systems
○ Stores metadata about where data lives for Presto

Kubecon ‘1818

● Reporting operator
○ Interacts with Presto, Hive, Prometheus and cloud APIs to tie everything

together
○ Imports metrics from Prometheus into Presto

■ Presto doesn’t have a native Prometheus Connector to expose metrics as
tables natively, but this is an option we’re evaluating.

○ Executes SQL queries against Presto to produce Reports
● Metering operator

○ Manages the life cycle of all the other components including Presto, Hive, HDFS,
and reporting-operator

○ Turns configuration into deployments, secrets, services and handles tasks like
migrations and upgrades

Operators

● Use the cluster’s monitoring stack for insight into cluster
○ Installed out of the box in OpenShift 3.11+

● Do the heavy lifting calculations on the cluster
○ Doesn’t require using a SaaS
○ Works in bare metal environments

● Store scheduled reports into external storage location (PV (gluster,nfs), S3
bucket, HDFS)
○ Longer term: support storing data in Postgresql/Mysql also

● Work with pre-existing data
○ By leveraging Presto we can avoid having to do an “import” of data in

many cases (eg: AWS detailed billing reports)

Integrate with existing systems

● The metering components import
metrics from Prometheus, storing
them in S3, HDFS, or a
PersistentVolume

● Metering in the background
produces reports

● The report results are generated they
are stored in S3, HDFS, or a
PersistentVolume

Metering Dataflow
Metering Software

Prometheus

Billing API
(AWS only)

OCP cluster

Domo

Chartio

Usage reports

Customer tools

AWS S3

Persistent
Volume/HDFS

Imported
Metrics

Kubecon ‘1821

● Creating a report is just writing a YAML file to reference your ReportGenerationQuery
CRD by name:

Creating a report

apiVersion: metering.openshift.io/v1alpha1

kind: Report

metadata:

 name: namespace-cpu-usage-hourly

spec:

 generationQuery: "namespace-cpu-usage"

 schedule:

 period: "hourly"

Kubecon ‘1822

Example report query
apiVersion: metering.openshift.io/v1alpha1

kind: ReportGenerationQuery

metadata:

 name: "namespace-cpu-usage"

spec:

 columns: […]

 reportQueries:

 - "pod-cpu-usage-raw"

 query: |

 SELECT

 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}' AS period_start,

 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS period_end,

 namespace,

 sum(pod_usage_cpu_core_seconds) as pod_usage_cpu_core_seconds

 FROM {| generationQueryViewName "pod-cpu-usage-raw" |}

 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart | prestoTimestamp |}'

 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}'

 AND dt >= '{| default .Report.ReportingStart .Report.Inputs.ReportingStart | prometheusMetricPartitionFormat |}'

 AND dt <= '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prometheusMetricPartitionFormat |}'

 GROUP BY namespace

 ORDER BY pod_usage_cpu_core_seconds DESC

USING METERING
ON LARGE CLUSTERS

Kubecon ‘1824

Capacity Planning

Online Huge multi-tenant, 5k+ namespace clusters

● We gate sign ups by capacity, aka Kubernetes Quotas
● Insight into capacity is important

○ Inactive Pods: wrote a Pod Descheduler
○ Inactive Users: remove after X days

● Metering helps us decide the default quota
○ Currently 1GB RAM / 2 vCPUs

Kubecon ‘1825

Capacity Planning

What did we find?

● Top 1000 namespaces use exactly 50% of their quota

Why?

● Default Pod resources.requests.memory = 500mb

Conclusion

● Oversubscribe is OK on this cluster
● Most users don’t customize RAM request

Kubecon ‘1826

Capacity Planning

What did we find?

● Ratio of usage vs request floats around 85% of limit

Conclusion

● For “real usage”, the default request is well dialed in

0.86

0.84

Kubecon ‘1827

Problems Encountered With 5k Namespaces

● Importing metrics can get backed up
● High metric resolution causes huge growth in storage requirements

○ No down sampling support in Metering yet
● Prometheus cannot always handle larger queries, so we are forced to query

smaller amounts
● Reports (namespace or pod reports) can get really long

○ 5k namespaces x 24 hours = 120k rows per hour for hourly report
○ Better to get TopN

Kubecon ‘1828

Success With 5k Namespaces

● Running Prometheus and Metering at this scale does work

https://docs.openshift.com/container-platform/3.11/scaling_performance/scaling_cluster_monitoring.html

Much higher Higher HigherHigher

DEMO

Kubecon ‘1830

$ kubectl create -f manifests/reports/cluster-utilization.yaml

scheduledreport.metering.openshift.io/cluster-cpu-utilization-hourly created

$ kubectl proxy

$ baseURL="https://metering.apps.example.com"

$ curl "$baseURL/api/v1/scheduledreports/get?name=cluster-cpu-utilization-daily&format=tab"

Create a report and view it

period_start period_end total_cluster_capacity_cpu_core_hours total_cluster_usage_cpu_core_hours cluster_cpu_utilization_percent

2018-11-02 00:00:00 +0000 UTC 2018-11-03 00:00:00 +0000 UTC 802.966667 55.922713 0.069645

2018-11-03 00:00:00 +0000 UTC 2018-11-04 00:00:00 +0000 UTC 816.000000 51.339178 0.062916

...

avg_cluster_capacity_cpu_cores avg_cluster_usage_cpu_cores avg_node_count avg_pod_count avg_pod_per_node_count

34.000000 2.370608 5.000000 91.473380 18.294676

34.000000 2.139132 5.000000 92.472917 18.494583

TRY IT OUT

https://github.com/operator-framework/operator-metering

Kubecon ‘1832

● Interaction using kubectl/oc and Openshift Admin Console primarily by creating CRs
● There are 4 primary CRDs users interact with:

○ Reports
○ ReportGenerationQueries
○ ReportDataSources
○ ReportPrometheusQueries

● Only need to use “Reports” if using out-of-the-box queries.

Metering CRDs

Kubecon ‘1833

Reports

● Specify the ReportGenerationQuery to run
● How often to compute the report

○ Hourly, daily, weekly
○ Cron schedule
○ Run-once

● Specify custom “inputs” to ReportGenerationQueries to control query behavior
○ Allows reports to aggregate other reports
○ Conditionally add extra fields to the report that aren’t exposed by default

● Results are retrieved using the reporting-operator REST API
○ Supports CSV, JSON, Tabular formats

Kubecon ‘1834

Report Queries

● ReportGenerationQueries
○ Write your own SQL queries to customize how metrics are aggregated and

processed.
○ Supports using Go templates to write more flexible queries
○ Supports user-input from Reports
○ ReportGenerationQueries are used by Reports, and other

ReportGenerationQueries
● ReportPrometheusQueries

○ Write your own PromQL queries to gather additional metrics from Prometheus
○ Write a ReportDataSource that uses your ReportPrometheusQuery to tell

metering to begin importing metrics

Kubecon ‘1835

Extensible Reporting queries pt. 2
apiVersion: metering.openshift.io/v1alpha1

kind: ReportPrometheusQuery

metadata:

 name: unready-deployment-replicas

spec:

 query: |

 sum(kube_deployment_status_replicas_unavailable) by (namespace, deployment)

apiVersion: metering.openshift.io/v1alpha1

kind: ReportDataSource

metadata:

 name: unready-deployment-replicas

spec:

 promsum:

 query: "unready-deployment-replicas"

Kubecon ‘1836

Extensible Reporting queries pt. 3
apiVersion: metering.openshift.io/v1alpha1

kind: ReportGenerationQuery

metadata:

 name: "unready-deployment-replicas"

spec:

 reportDataSources:

 - "unready-deployment-replicas"

 columns: […]

 query: |

 SELECT

 labels['namespace'] as namespace,

 labels['deployment'] as deployment,

 sum(amount * "timeprecision") AS total_replica_unready_seconds,

 avg(amount * "timeprecision") AS avg_replica_unready_seconds

 FROM {| dataSourceTableName "unready-deployment-replicas" |}

 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart | prestoTimestamp |}'

 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}'

 GROUP BY labels['namespace'], labels['deployment']

 ORDER BY total_replica_unready_seconds DESC, avg_replica_unready_seconds DESC, namespace ASC, deployment ASC

