
Cloud Native
Transformation

Who are we?

Pavel Nikolov
Principal Software Engineer

 pavelnikolov

Matt Hope
Principal System Engineer

 matthope

Backstory

• We work in a 180-year old media publishing company

• Change from within is very difficult; on the other hand

• Media has zero barriers to entry (now there is more competition

than ever)

Some of our mastheads

How is this relevant to you?

• You are in one of these situations - you are:

• considering a cloud native transformation,

• about to begin,

• in a transition process; or

• already reaping the benefits of the transformation

Our Journey

Planning

PLANNING

Corporate Reorganisation

Few important things happened at the same time

• Corporate reorganisation

• Rewrite of almost all our systems (websites, mobile apps and

backend systems)

• Cloud native transformation

Inception

INCEPTION

The Start of the Transformation

• We set up a Kubernetes cluster; and then we

• Started exploring and experimenting with it
• This didn’t continue for long because we had tight deadlines...

• It was high time we setup our real cluster(s)

The Unknown

UNKNOWN

?

Where do we start from?

• With no prior Kubernetes experience at enterprise scale; and

• No prior microservices experience in the team

• There were many (unknown) unknowns...

Preparation

PREPARATION

Important Key Decisions

• Set up different Kubernetes clusters per environment

• Setup a namespace per application per environment

• (Almost) all our applications use the same helm chart

• Have a CI/CD and deployment process

Skeptic

SKEPTIC

“No” is temporary; “Yes” is forever

• We’ve been very skeptical when introducing new tech to our stack

• Resisted using Linkerd or Istio in the early days

• Same goes for serverless and other technologies

• What we learnt:
• Be careful when introducing a new technology! And only do it if it’s

absolutely necessary!

Secret

SECRET

Think Secrets First

Another advice from us:

• Start with your secrets solution from day one! We can’t stress this
enough!

• Before you deploy any code to prod try to:
• Use, rotate and revoke secrets

Forbidden

FORBIDDEN

Don’t leave access control for later

• Regardless of your company size or use cases, make sure you
have an access control plan from the beginning

• Security is a fundamental step during the design phase of every
system

• Security and access control is hard to retrofit

North Observability

N. OBSERVABILITY

S. OBSERVABILITY

Setup Observability Infrastructure

• Your immediate next step is to ensure good observability
infrastructure

• What we mean by observability:
• Centralised logging (preferably with asynchronous processing)
• Metrics (Prometheus)
• Tracing (OpenTracing / Jaeger)
• Alerting (Prometheus + 3rd party services)

South Observability

PLANNING

N.OBSERVABILITY

S.OBSERVABILITY

Observability is key!

Once the infrastructure is in place you have to ensure that:
• All your applications use a levelled and structured logger
• Send tracing data
• Export application metrics
• Export system metrics

• Link metrics to k8s resource/limits/HPA

Micro

MICRO

Do you speak microservices?

• Does your team have any prior experience with microservices?
• Ours did not…
• We had to learn a lot on the fly

• It might not be immediately obvious but microservices are related
to multiple CNCF projects and you better be prepared

Serialisation

SERIALISATION

Don’t just use JSON
• Early on we decided not to use JSON for message serialisation for

service-to-service communication
• Instead we use gRPC in (almost) all of our services

The Skeleton

SKELETON

The (app) Skeletons
When you build a new system of microservices from scratch you
generally have two options:

• Use a microservice library; or
• Create an application skeleton (boilerplate)

• This ensured that all our apps use metrics, tracing, proper logging, same
helm chart, same CI configuration, health/readiness probes, gRPC, useful
middlewares, infrastructure code and more

Knowledge

KNOWLEDGE

Knowledge Sharing
In order to avoid silos and ensure that everyone on the team has
enough knowledge about everything we organize:

• Regular “brown bag” sessions
• “Level up” sessions
• Trainings
• Time for experiments

We also try to get involved with open-source as much as possible

DevOps

DEVOPS

DevOps culture
For all apps we try to apply the following rules:

• You build it, you own it
• Developers from each team get paged if their apps are not

behaving well
• Platform engineering team gets paged only for system-wide issues
• ChatOps
• GitOps
• Strict pre-deployment checks

Business

BUSINESS

Benefits for the business
• Our culture changed significantly
• Lead time to feature delivery decreased from months to days
• More frequent production releases

• before – once every 3 weeks
• after – a dozen times per day

• The teams are much more motivated now

There are more islands to visit
It’s a journey, not a destination!

Questions?

