
Introducing gRPC
Jayant Kolhe, Google
jkolhe@google.com

Summary of gRPC Talks

• Beginner level
• Introducing gRPC: Jayant Kolhe
• Efficient IoT with Protocol Buffers and gRPC: Vladmir Vivien: @14:45

on Wed.

• Intermediate level
• gRPC Load balancing on Kubernetes : Jan Tattermusch: @11:55 on

Wed.

• Intermediate/Expert level
• gRPC Deep Dive: Sree Kuchibhotla: @16:35 on Thursday

What is gRPC?

gRPC stands for gRPC Remote Procedure Calls.

A high performance, standards-based, open source
general purpose feature-rich RPC framework

CNCF's RPC framework for building cloud native
apps, next generation of Stubby RPC used in Google.

Actively developed and production-ready, current
version is 1.11.

What is gRPC?

A high performance, open-source multi-platform
Remote Procedure Call framework

Learning from Predecessor of gRPC
at Google called Stubby.

Microservices at Google: O(1010)
RPCs per second.

Images by Connie
Zhou

Getting Started : Outline

• Define a service in a .proto file
using Protocol Buffers IDL

• Generate server and client stub
code using the protocol buffer
compiler

• Extend the generated server class
in your language to fill in the logic
of your service

• Invoke it using the generated client
stubs

An Aside: Protocol Buffers

• Google’s Lingua Franca for serializing
data: RPCs and storage

• Binary data representation
• Structures can be extended and

maintain backward compatibility
• Code generators for many languages
• Strongly typed
• Not required for gRPC, but very handy
• Other integrations:

google/flatbuffers, Microsoft/bond

syntax = “proto3”;

message Person {
 string name = 1;
 int32 id = 2;
 string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber phone = 4;
}

Lets walk through an example

• What type of messages you want to
send?

• What type of services you want to
expose?

• Service can have one or more RPC
methods.

• A .proto can have one or more service
definitions.

Example: RouteGuide : grpc/grpc/examples

Messages:
// Message Objects
// Point: location (lattitude, longitude)
// Feature: Feature at a location
// RouteNote: Note sent from point along a route

Service:
// Interface exported by the server
// Contains Methods for:
// GetFeature: Obtains the feature
// at a given position.
// RouteChat: send RouteNotes while travelling
// across a route and receive those
// from other asynchronously

Start with a Protocol Buffer

• Start with defining messages you
want to send syntax = “proto3”;

message Point {
 int32 latitude = 1;
 int32 longitude = 2;
}

message Feature {
 string name = 1;
 Point location = 2;
}

message RouteNote {
 Point location = 1;
 string message = 2;
}

Add Service Definition
syntax = “proto3”;

message Point {
 int32 latitude = 1;
 int32 longitude = 2;
}

message Feature {
 string name = 1;
 Point location = 2;
}

message RouteNote {
 Point location = 1;
 string message = 2;
}

service RouteGuide {
 rpc GetFeature(Point) returns (Feature);
 rpc RouteChat(stream RouteNote) returns
 (stream RouteNote);
}

• Unary RPC:
• Client sends a request
• Server sends a response

• Client Streaming RPC:
• Client sends multiple messages
• Server sends one response

• Server Streaming RPC:
• Client sends one message
• Server sends multiple messages

• Bidi Streaming RPC:
• Client and Server can independently

send multiple messages to each other

Generate code for your application
syntax = “proto3”;

message Point {
 int32 latitude = 1;
 int32 longitude = 2;
}

message Feature {
 string name = 1;
 Point location = 2;
}

message RouteNote {
 Point location = 1;
 string message = 2;
}

service RouteGuide {
 rpc GetFeature(Point) returns (Feature);
 rpc RouteChat(stream RouteNote) returns
 (stream RouteNote);
}

Code generator converts .proto
idiomatically to your language.
• Idiomatic objects for messages
• with getters and setters for the

message types
• And as an abstract interface class for

the service type

Generated Code Snippet
class RouteGuide {

 class Stub : public StubInterface{

 Public:

 Status GetFeature(ClientContext* context, const Point& request, Feature* response) override;
 unique_ptr<ClientReaderWriter<RouteNote,RouteNote>> RouteChat(ClientContext* context) override;
 };

 static unique_ptr<Stub> NewStub(const shared_ptr<ChannelInterface>& channel,
 const StubOptions& options = StubOptions());

 class Service : public ::grpc::Service {

 Public:

 virtual Status GetFeature(ServerContext* context, const Point& request, Feature* response);
 virtual Status RouteChat(ServerContext* context, ServerReaderWriter<RouteNote, RouteNote>* stream);
 };
}

Generated Code Snippet
class RouteGuide {

 class Stub : public StubInterface{

 Public:

 Status GetFeature(ClientContext* context, const Point& request, Feature* response) override;
 unique_ptr<ClientReaderWriter<RouteNote,RouteNote>> RouteChat(ClientContext* context) override;
 };

 static unique_ptr<Stub> NewStub(const shared_ptr<ChannelInterface>& channel,
 const StubOptions& options = StubOptions());

 class Service : public ::grpc::Service {

 Public:

 virtual Status GetFeature(ServerContext* context, const Point& request, Feature* response);
 virtual Status RouteChat(ServerContext* context, ServerReaderWriter<RouteNote, RouteNote>* stream);
 };
}

Write code for your service by
creating a derived class that
implements the RPC method
handlers specified in the .proto file

Generated Code Snippet
class RouteGuide {

 class Stub : public StubInterface{

 Public:

 Status GetFeature(ClientContext* context, const Point& request, Feature* response) override;
 unique_ptr<ClientReaderWriter<RouteNote,RouteNote>> RouteChat(ClientContext* context) override;
 };

 static unique_ptr<Stub> NewStub(const shared_ptr<ChannelInterface>& channel,
 const StubOptions& options = StubOptions());

 class Service : public ::grpc::Service {

 Public:

 virtual Status GetFeature(ServerContext* context, const Point& request, Feature* response);
 virtual Status RouteChat(ServerContext* context, ServerReaderWriter<RouteNote, RouteNote>* stream);
 };
}

Write code for your service by
creating a derived class that
implements the RPC method
handlers specified in the .proto file

Write code for your client by creating
a “Stub” and invoking RPCs as its
member functions

In a nutshell...

• IDL to describe service API
• RPC parameter: unary or stream
• RPC return value: unary or stream

• Automatically generates client stubs
and abstract server classes in 10+
languages

• Takes advantage of HTTP/2 feature set
• github.com/grpc

• Full open-source: code reviews,
issue tracking, project planning, etc.

https://github.com/grpc/

Why gRPC?

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

gRPC Speaks Your Language

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

gRPC Speaks Your Language

● Java
● Go
● C/C++
● C#
● Node.js
● PHP
● Ruby
● Python
● Objective-C
● Dart

Service definitions and client libraries

● Swift

● Haskell

● Rust

● Typescript

● ….

More Languages...

Cross platform framework

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Cross platform framework

More help from community on

● Bindings to languages such as clojure, kotlin, jruby
● New Environments and runtimes, e.g. GraalVM
● Supporting More platforms
● Testing on platforms that we do not have access to

Strongly Typed Service Contracts

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Through Protocol buffers
syntax = “proto3”;

message Point {
 int32 latitude = 1;
 int32 longitude = 2;
}

message Feature {
 string name = 1;
 Point location = 2;
}

message RouteNote {
 Point location = 1;
 string message = 2;
}

service RouteGuide {
 rpc GetFeature(Point) returns (Feature);
 rpc RouteChat(stream RouteNote) returns
 (stream RouteNote);
}

● Strictly typed contract
● Conventions for Backward and

forward compatibility of APIs
● Use your conventions for:

○ Semantic versioning
○ Stateless RESTful APIs
○ CRUD: enforce single service

definition with Create, Read,
Update, and Delete

Performant & Efficient

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

• HTTP/2 Performance:
• Multiplexing, Header Compression,

Binary Framing

• Binary compact protos:
Serialization time, size of
message on wire, client and server
compute time, network throughput

• Libraries optimized for
performance.

Performant & Efficient

http://www.http2demo.io/

HTTP/2HTTP/1.1

https://cloud.google.com/blog/big-data/2016/03/announcing-grpc-alpha-f
or-google-cloud-pubsub

11x difference per
CPU

3x increase in
throughput

http://www.http2demo.io/
https://cloud.google.com/blog/big-data/2016/03/announcing-grpc-alpha-for-google-cloud-pubsub
https://cloud.google.com/blog/big-data/2016/03/announcing-grpc-alpha-for-google-cloud-pubsub

Extensible, Customizable

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Extensible, Customizable

● Interceptors
● Transports
● Auth & Security

○ Plugin auth mechanism for extensibility
● Stats, Monitoring and Tracing

○ Prometheus, Zipkin, OpenCensus, Opentracing integrations
● Service Discovery

○ Consul, Zookeeper, Eureka
● Supported with Proxies

○ Envoy, Nginx, linkerd, nghttp2, haproxy,...

Easy to use

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Easy to use

● Single line installation
● Idiomatic APIs
● Error propagation
● Reconnect automatically on broken idle connections
● Cancellation propagation
● Deadline propagation

Stream is native to gRPC

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Stream is native to gRPC

• Unary RPC:
• Client sends a request
• Server sends a response

• Client Streaming RPC:
• Client sends multiple messages
• Server sends one response

• Server Streaming RPC:
• Client sends one message
• Server sends multiple messages

• Bidi Streaming RPC:
• Client and Server can independently

send multiple messages to each other

Open & Standards Compliant

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Open & Standards Compliant

● Developed on Github, in CNCF over an year
● Open RFC like process for Design changes
● HTTP2 based with gRPC wire protocol using HTTP2

published; standards based helps grpc traffic traverse
network hops of proxies, firewalls

Production Ready

Multi-language On every platform Strict Service contracts

Performant & Efficiency on wire Extensible, Customizable Easy to use

Streaming, BiDiStreaming APIs Open & Standard compliant Production Ready

Production Ready

● Well Tested:
○ Large number of tests for interoperability across

languages
○ Large number of tests for portability across platforms
○ Fuzzing tests

● Production Debugging support: Stats, Tracing, Monitoring,
Channelz

● Used in production by several users

Why gRPC in a nutshell

Multi-language

10+ languages

On every platform

Linux, macosx, windows, Android,
iOS, Embedded (iOT)

Strict Service contracts

Define and enforce contracts, backward
compatible

Performant & Efficiency on
wire

1m+ QPS - unary, 3m+
streaming (dashboard), 2-3X
gains

Extensible, Customizable

Interceptors, Auth, Transport, IDL,
LB

Easy to use

Single line installation, idiomatic APIs,
Error propagation, cancellation
propagation, deadline propagation

Streaming, BiDiStreaming
APIs

Large payloads, speech, logs

Open & Standard compliant

Open source and growing
community & HTTP/2

Production Ready

Reliable, Well tested, Scalable

http://performance-dot-grpc-testing.appspot.com/explore?dashboard=5636470266134528

Thank You

gRPC (http://grpc.io) welcomes your contributions

• http://grpc.io/contribute
• https://github.com/grpc
• https://github.com/grpc-ecosystem

Contact gRPC:

• Gitter Channel : https://gitter.im/grpc/grpc
• Twitter: @grpcio
• Mailing List : grpc-io@googlegroups.com

http://grpc.io
http://grpc.io/contribute
https://github.com/grpc
https://github.com/grpc-ecosystem
https://gitter.im/grpc/grpc
mailto:grpc-io@googlegroups.com

