
What’s in the box? 
Resource Management in Kubernetes

Special Mention

Balaji Subramaniam

Louise Daly
Cloud Native Orchestration Engineer
louise.m.daly@intel.com

Ivan Coughlan
Cloud Native Orchestration Architect
ivan.Coughlan@intel.com



2

Notices and Disclaimers
© 2018 Intel Corporation. Intel, the Intel logo, Xeon and Xeon logos are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as 
the property of others.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or 
retailer. 

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

​Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as 
any warranty arising from course of performance, course of dealing, or usage in trade.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data 
are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific 
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction 
sets covered by this notice.  Notice Revision #20110804.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 
configuration. No computer system can be absolutely secure.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions 
may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. 
Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel® Hyper-Threading Technology available on select Intel® processors. Requires an Intel® HT Technology-enabled system. Your performance varies depending on the specific hardware 
and software you use. Learn more by visiting http://www.intel.com/info/hyperthreading. 

All SKUs, frequencies, features and performance estimates are PRELIMINARY and can change without notice

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Software and workloads used in performance tests may have been 
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, 
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating 
your contemplated purchases, including the performance of that product when combined with other products. For more complete information 
visit http://www.intel.com/performance. Configurations: Based on Intel estimates.

http://www.intel.com/benchmarks
http://www.intel.com/go/turbo
http://www.intel.com/info/hyperthreading
http://www.intel.com/performance


3

Agenda
Current status

Challenges 
Steps taken

Node Feature discovery | CPU Pinning | Huge pages | Device Plugins | Numa

Demo



4

Kubernetes Resource Management today

apiVersion: v1                                                     
kind: Pod                                                          
metadata:                                                          

name: PodA
spec:  
containers:                                                      

- image: resourceapp
resources:

requests:
cpu: “1000Mi”
memory: “512Mi”

name: resourcecontainer

POD SPECIFICATION 

1

1. Get Pod Specification 
2. Get Node 1 and Node 2 Information
3. Match node resources against pod resources 
4. Scheduler decided to place the pod on node 2 

Kubernetes 
Scheduler

Node 1

3
Pod B

allocated 
resources

CPU: 512MI

Memory: 256MI
2

Allocatable
CPU: 2000Mi

Memory: 512Mi

Node 2

Allocatable
CPU: 2000Mi

Memory: 1000Mi

Pod A – new
allocated 
resources

CPU: 1000MI

Memory: 521MI

2
4



5

Kubernetes Resource Management

Problem Statement
Kubernetes clusters are deployed on a wide 
array of heterogeneous environments with 

different hardware resources

Today, CPU and Memory are the core resources 
orchestrated by Kubernetes. Workloads have a 

wide variety of hardware resource 
requirements as well as CPU and Memory but 

Kubernetes is agnostic to these.

GOAL
Introduce a broader array of 

resources representing cluster abilities to 
cater for the wide range of workloads being 

deployed using Kubernetes 



6

Address key Challenges in containers Bare Metal

Ability to request/allocate platform capabilities

High performance Data Plane (N-S)

High performance Data Plane (E-W)

Multiple network interfaces for VNFs

CPU Core-Pinning and isolation for K8s pods

Dynamic Huge Page allocation

Platform telemetry information

Challenges being addressed

Discovery, Advertise, schedule and manage devices with K8s

Guarantee NUMA node resource alignment

Open Source:  CNI plug-in - V2.0 June ‘17

Upstream K8s: TBD 

Open Source: CNI plug-in –
V1.0 Sep ‘17

Open Source: CNI plug-in –
V2.0 April ‘17 

Open Source:  Nov. ‘16

Upstream K8: Incubation Graduation TBD

Open Source: V1.2 April ‘17

Upstream K8:  Phase 1 - V1.8  Sept ‘17

Upstream K8: V1.8  Sept ‘17

SOFTWARE
AVAILABILITY*

Upstream collectd: V5.7.2 June ‘17 ; 
5.8.0  ((Q4 2017 date TBD) 

Solution

Node Feature 
Discovery

CPU Manager for 
Kubernetes

Native Huge page 
support for Kubernetes

VHOST USER

SR-IOV

Device Plugin

NUMA Manager

Upstream K8:  Phase 1 - V1.8  Alpha

Upstream: Working PoC with proposal

Upstream K8:  TBD

Kubernetes Networking

Data Plane  Acceleration

Telemetry

Resource 
Management

Enhance Platform Awareness (EPA)

Open Source:  Available on Intel github https://github.com/Intel-Corp  |  NFD at   
https://github.com/kubernetes-incubator/node-feature-discovery



7

Node Feature Discovery

SR-IOV Network Features Single Root I/O Virtualization

BootGuard A hardware-based boot integrity protection mechanism (New feature on Purley).

UEFI Secure Boot Boot Firmware verification and authorization of OS Loader/Kernel components

AVX CPUID Features: Intel® Advances Vector Extensions 512 (Intel® AVX 512) 

Turbo Boost Intel® Turbo Boost Processor accelerator

Node Feature Discovery Label Details

NODE FEATURE DISCOVERY IN K8s 

PROBLEM

No way to identify hardware 
capabilities or configuration

Inability for workload to request 
certain hardware feature

SOLUTION

Node Feature Discovery brings Enhanced 
Platform Awareness (EPA) in K8s

NFD detects resources on each node in a 
Kubernetes cluster and advertises those features

Allows matching of workload to 
platform capabilities

NODE 2

NFD 
DISCOVERY 

POD

NODE 1

NFD 
DISCOVERY 

POD

Application A

Application B
POD label:

Application B

Application A
POD label:

SR-IOV
Bootguard

MASTER

ETCD

NODE 1

NODE 2

AVX

Turbo boost

Bootguard

Secureboot

SR-IOV

NFD 
DISCOVERY 

POD

REFERENCE

github.com/kubernetes-incubator/node-feature-discovery

https://github.com/kubernetes-incubator/node-feature-discovery


8

NFD Secureboot USECASE 
PROBLEM

The kernel does not allow IGB_UIO based DPDK 
applications on UEFI Secure Boot enabled systems

SOLUTION

Using node antiaffinty feature in kubernetes to prevent 
DPDK application requiring IGB_UIO driver support 

from landing on nodes with SecureBoot label created 
by Node feature Discovery

apiVersion: v1                                                     
kind: Pod                                                          
metadata:                                                          

name: dpdkpodRequiringUIOSupport
spec:  
affinity:

nodeAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: “nfd-SecureBoot”
operator: In
values:
- “true”

containers:                                                      
- image: dpdkapp

name: dpdkcontainer



9

CPU Manager for Kubernetes – CPU Pinning and Isolation
PROBLEM

Kubernetes has no mechanism to support 
core pinning and isolation 

Results in high priority workloads not achieving SLAs

* Noisy Neighbor Workload: An application that effect 
causes other virtual applications that share the 

infrastructure to suffer from uneven performance

WITHOUT CMK: CPU Pinning and Isolation

Core 0

CPU 0 CPU 1

Target
Workload

Core 1

CPU 2 CPU 3
Noisy 

Neighbour
Workload

SOLUTION

CPU-Manager-For-Kubernetes introduces core 
pinning and isolation to K8s without requiring 

changes to the code base

Gives a performance boost to high priority 
applications 

Negates the noisy neighbour* scenario 

Core 0

CPU 0 CPU 1

Target 
Workload

Core 1

CPU 2 CPU 3
Noisy 

NeighbourW
orkload

WITH CMK: CPU Pinning and Isolation

Noisy 
Neighbour
Workload

REFERENCE

https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes

https://kubernetes.io/docs/tasks/administer-cluster/cpu-
management-policies/

https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/


10

Huge page Native Support in Kubernetes
Problem

No resource management of 
Huge Pages in Kubernetes

Responsibility of the cluster operator 
to handle it manually

SOLUTION
Huge Pages introduced as first class 

resource in Kubernetes

Support for Huge Pages via hugetlbfs enabled 
through a memory backed volume plugin

Inherent accounting of Huge Pages 

Automatic relinquishing of Huge Pages in case 
of unexpected process termination

REFERENCE

https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/

https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/


11

Device Plugins overview
WHY?

Device vendors have to write custom Kubernetes code in 
order to 

integrate their device with the ecosystem

Results in multiple vendors maintaining custom code making 
it 

difficult for a customer to consume 

HOW?
Provide a device plugin framework which enables vendors to 

advertise, schedule 
and setup devices with native Kubernetes integration

Device Plugins are easily deployed and workload device 
requests are

made via extended resource requests in the Pod Specification

BENEFITS
Enables effective resource utilization  

Workload Resource Requests: Device 

Kiubernetes Node

Kubelet – device mgr Device Plugin

Device a

gRPC

Workload
Device b

Device C
Device a

REFERENCE

https://kubernetes.io/docs/concepts/cluster-administration/device-
plugins/

https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/


12

QAT support in kubernetes

PROBLEM
No way to identify QAT devices available in a Kubernetes 

cluster
Inability for a workload to request 

a QAT device along with other compute resources 

SOLUTION
QAT support enabled through Device plugins 

QAT Device Plugin discovers QAT cards on a node and the 
number of VFs configured, advertises this to the node and 

allocates VFs based on workload resource requests

Workload Resource Requests: QAT Device 

Kiubernetes Node

Kubelet – device mgr QAT Device Plugin

QAT VF 1

gRPC

Workload
QAT VF 2

QAT VF 2
QAT VF 1

REFERENCE

https://kubernetes.io/docs/concepts/cluster-administration/device-plugins

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html

https://kubernetes.io/docs/concepts/cluster-administration/device-plugins
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html


13

NUMA Manager for Kubernetes –
NUMA alignment of Resources

PROBLEM
Kubernetes has multiple independent components that 

handle resource allocation resulting in no alignment on Multi 
NUMA Node systems

Results in workloads not achieving SLAs or increased resource 
utilization

SOLUTION
NUMA Manager provides a mechanism to guarantee NUMA 

Node Affinity of resources requested by a workload

NUMA Manager interfaces with components( eg. CPU Manager 
& Device Manager) that have NUMA awareness to enable 

NUMA aligned resource allocations

Gives a performance boost to priority applications as 
resources are NUMA Node aligned

CPU 1

Interconnect

Device 0

NUMA Node 1

Socket 0 Socket 1Device 1

Workload

It

Interconnect
NUMA Node 0

WITH NUMA MANAGER

Device 0

Socket 0

It

Interconnect

WITHOUT NUMA MANAGER

Workload Resource Requests: CPU Device

Socket 1Device 1

NUMA Node 0 NUMA Node 1

Workload

REFERENCE

https://github.com/kubernetes/community/pull/1680

https://github.com/kubernetes/community/pull/1680


14

Container Bare Metal Experience KITS

https://networkbuilders.intel.com/network-technologies/container-experience-kits

Feature Briefs Feature Application Notes DEMOSSW Script Benchmark Report

What it is?

A library of best-practice development guidelines for Container bare metal orchestration 

Shortens the time-to-expertise

Addresses challenges in performance, manageability, security and service assurance

https://networkbuilders.intel.com/network-technologies/container-experience-kits


15

Container Bare metal Experience Kits

Reference Architecture

Reference Architectures 
Installation Scripts 

Reference Architecture User Guide

Platform Telemetry

Application Note

Feature Brief

Demo

Enhance Platform Awareness

Feature Brief

White Paper

Tech. Application Note

Benchmark Test Report

Demo

Kubernetes Networking

Feature Brief

Tech. Application Note

Demo



16

DEMO



17

Call to action
Checkout the Container Baremental experience 

kits: 
https://networkbuilders.intel.com/network-technologies/container-

experience-kits

Use cases & feedback welcome on:
Node Feature discovery | CPU Pinning | Huge pages | Device Plugins | Numa

Participation in:
https://github.com/kubernetes/community/tree/master/wg-resource-

management

https://networkbuilders.intel.com/network-technologies/container-experience-kits
https://github.com/kubernetes/community/tree/master/wg-resource-management




Datacenter network solution group Intel Confidential 19

Backup



20Datacenter Solutions Group

Example: CPU Manager for Kubernetes Benchmark Test setup
Test configuration:

Master & Minion Nodes: {mother board: Intel Corporation; 
S2600WFQ; CPU: Intel® Xeon® Gold Processor 6138T; 2.0 Ghz; 2 
socket; 20 cores; 27.5 MB; 125 W; Memory: Micron 
MTA36ASF2G72PZ; 1 DIMM/Channel, 6 Channel/Socket; BIOS: 
Intel Corporation SE5C620.86B.0X.01.0007.060920171037; NIC: 
Intel Corporation; Ethernet Controller XXV710 for 2x25GbE 
Firmware version 5.50; SW: Ubuntu 16.04.2 64bit; Kernel 4.4.0-
62-generic x86_64; DPDK 17.05}

IXIA* - IxNetwork 8.10.1046.6 EA; Protocols: 8.10.1105.9, IxOS 
8.10.1250.8 EA-Patch1

With core isolation Performance is consistent with or 
without “noisy” application present

Without core 
isolation EPA 
feature, in presence 
of “noisy 
application”

• >70% Throughput drops for 
small packet sizes 

• > 10%  Throughput drops for 
large packet sizes 

• > x10 Packet latency increased 

*For more complete information about performance and benchmark results, visit http://www.intel.com/performance. ; Test configuration: Master & Minion Nodes: {mother board: Intel 
Corporation; S2600WFQ; CPU: Intel® Xeon® Gold Processor 6138T; 2.0 Ghz; 2 socket; 20 cores; 27.5 MB; 125 W; Memory: Micron MTA36ASF2G72PZ; 1 DIMM/Channel, 6 Channel/Socket; 
BIOS: Intel Corporation SE5C620.86B.0X.01.0007.060920171037; NIC: Intel Corporation; Ethernet Controller XXV710 for 2x25GbE Firmware version 5.50; SW: Ubuntu 16.04.2 64bit; 
Kernel 4.4.0-62-generic x86_64; DPDK 17.05}; IXIA* - IxNetwork 8.10.1046.6 EA; Protocols: 8.10.1105.9, IxOS 8.10.1250.8 EA-Patch1
*Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and 
"Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

http://www.intel.com/performance


21Datacenter Solutions Group

Example: CPU Manager for Kubernetes Benchmark Test Results

21

Core Isolation decrease latency of target workload 
up >x13 in presence of Noisy Workload  

latency decrease 

For more complete information about performance and benchmark results, visit http://www.intel.com/performance. ; Test configuration: Master & Minion Nodes: {mother board: Intel 
Corporation; S2600WFQ; CPU: Intel® Xeon® Gold Processor 6138T; 2.0 Ghz; 2 socket; 20 cores; 27.5 MB; 125 W; Memory: Micron MTA36ASF2G72PZ; 1 DIMM/Channel, 6 Channel/Socket; BIOS: 
Intel Corporation SE5C620.86B.0X.01.0007.060920171037; NIC: Intel Corporation; Ethernet Controller XXV710 for 2x25GbE Firmware version 5.50; SW: Ubuntu 16.04.2 64bit; Kernel 4.4.0-
62-generic x86_64; DPDK 17.05}; IXIA* - IxNetwork 8.10.1046.6 EA; Protocols: 8.10.1105.9, IxOS 8.10.1250.8 EA-Patch1
*Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and 
"Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Core Isolation increase throughput of target-workload 
>200% for small packets in presence of Noisy Workload

Core Isolation leads to performance consistency solving noisy workloads problem

throughput increase  

http://www.intel.com/performance


Datacenter network solution group Intel Confidential 22

Multiple Network Interfaces for VNFs

PROBLEM

Kubernetes support only one Network interface – “eth0”

In NFV use cases, it is required to provide multiple network 

interfaces to the virtualized operating environment of the VNF
eth0  

Pod

eth1 

eth2 

eth0
interface

Pod

Container 
Container 

Container 

Container 
Container 

Container 

USE CASES

Functional separation of control and data network planes 

link aggregation/bonding for redundancy of the network

Support for implementation of different network SLAs 

Network segregation and Security

REFERENCE

Multus CNI – https://github.com/Intel-Corp/multus-cni

Native Kubernetes - Mailing list with details on discussions :               
https://groups.google.com/forum/#!forum/kubernetes-sig-network

Network Control 
Flow with Multus

Pod Network Interfaces
with Multus

SR-IOV

net1

KUBELET

SR-IOV

net0eth0

LINUX BRIDGE
VF0 VF1

SR-

IOV

Logging

vFirewall

net0 net1

eth0

F
la

n
n
e
l 
L
in

u
x
 B

ri
d
g
eKubernetes 

Pod

https://groups.google.com/forum/#!forum/kubernetes-sig-network


Datacenter network solution group Intel Confidential 23

Vhost User CNI Plugin

PROBLEM

No Container Networking with software acceleration 

for NFV,  particularly for East – West Traffic

SOLUTION

Virtio_user/ vhost_user performance better than VETH pairs

Supports VPP as well as DPDK OVS

Vhost_user CNI plugin enables K8s 

to leverage data plane acceleration

REFERENCE

https://github.com/intel/vhost-user-net-plugin (V1.0 Sep ’17)

NIC

eth0

OVS- DPDK / VPP

vhostuser

Kubernetes Pod

Container

VNF Application

DPDK

virtio_user

https://github.com/intel/vhost-user-net-plugin


Datacenter network solution group Intel Confidential 24

DPDK – SRIOV CNI Plugin

Kubernetes Pod

Container

VNF Application

DPDK

Kernel

SR-IOV Enabled Network Interface

VFVF VF

uio_pci_generic/igb_uio/vfio-pci

PROBLEM

Lack of support for physical platform resource isolation

No guaranteed network IO performance

No support for Data Plane Networking

SOLUTION

Allows SRIOV support in Kubernetes via a CNI plugin

Supports two modes of operation:

SR-IOV: SR-IOV VFs are allocated to pod network namespace

DPDK: SR-IOV VFs are bounded to DPDK drivers in the userspace

REFERENCE

github.com/Intel-Corp/sriov-cni 



Datacenter network solution group Intel Confidential 25

Bonding CNI Plugin

PROBLEM

There is no redundancy of network link failure in container 

environment. This results in high-priority workloads not achieving  

expected high-availability. e.g., due to failure of NIC, network 

Switch or cable breakdowns.

SOLUTION

Bonding CNI provides a mechanism to aggregate multiple network 

interfaces into a single  logical “bonded” interface in a Container 

environment. Thus providing a fail-over, high-availability network 

for containerized applications e.g., VNF. 

REFERENCE

https://github.com/Intel-Corp/bond-cni

network

SRIOV 
PF 0

Kubernetes Pod

Container

VNF Application

Net 0 Net 1

SRIOV 
PF 1

bond

VF VF VF VFVF VF VF VF

https://github.com/Intel-Corp/bond-cni

	What’s in the box?  Resource Management in Kubernetes
	Slide 2 
	Slide 3 
	Slide 4 
	Slide 5 
	Slide 6 
	Slide 7 
	Slide 8 
	Slide 9 
	Slide 10 
	Slide 11 
	Slide 12 
	Slide 13 
	Slide 14 
	Slide 15 
	Slide 16 
	Slide 17 
	Slide 18 
	Slide 19 
	Example: CPU Manager for Kubernetes Benchmark Test setup
	Example: CPU Manager for Kubernetes Benchmark Test Results
	Slide 22 
	Slide 23 
	Slide 24 
	Slide 25 



